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In earlier work we proposed a generating function that encodes the Jordan block spectrum of the 
integrable Hypereclectic spin chain, related to the one-loop dilatation operator of the dynamical fishnet 
quantum field theory. We significantly improve the expressions for these generating functions, rendering 
them much more explicit and elegant. In particular, we treat the case of the full spin chain without 
imposing any cyclicity constraints on the states, as well as the case of cyclic states. The latter involves 
the Pólya enumeration theorem in conjunction with q-binomial coefficients.
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1. Introduction and review

A novel integrable spin chain model was introduced in [1] and 
called the Hypereclectic spin chain. It is a three-state model defined 
through an exceedingly simple nearest-neighbor non-hermitian 
Hamiltonian acting on a length-L state space

C3 ⊗C3 ⊗ · · · ⊗C3︸ ︷︷ ︸
L−times

(1)

as

H =
L∑

�=1

P�,�+1 (2)

with periodic boundary conditions PL,L+1 = PL,1, where P�,�+1 :
C3 ⊗ C3 → C3 ⊗ C3 is a chiral permutation operator that only 
acts non-trivially on adjacent states �, � + 1 as

P�,�+1 |21〉 = |12〉 , (3)

while killing all other eight nearest-neighbor tensor product states 
|12〉, |32〉, |23〉, |13〉, |31〉, |11〉, |22〉, |33〉. Clearly the Hamilto-
nian H preserves the individual numbers of excitations of type 1,2 
and 3. Whereas its integrability was established in [1] by prov-
ing the existence of an R-matrix and a tower of commuting higher 
charges, it was also demonstrated that the Bethe ansatz fails. This 
was shown to be closely related to the non-diagonalizability of this 
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Hamiltonian. Instead, except for the diagonalizable two-particle 
subsectors, H may be brought, in principle, into Jordan normal form
(JNF) by a suitable similarity transform. While its generalized en-
ergy eigenvalues are all trivially zero, the resulting spectrum of 
Jordan blocks turned out to be extremely rich, intricate and non-
trivial. Powerful combinatorial methods for determining this spec-
trum were introduced in [2]. They rest on a compelling and ex-
tensively checked but unfortunately still unproven non-shortening
conjecture. It then turned out that the spectrum for fixed excita-
tion numbers L, M, K is nicely encoded into an auxiliary partition 
function

Z all
L,M,K (q) = Trall

L,M,K qŜ− 1
2 Ŝmax . (4)

Here one takes the trace of a certain diagonal counting operator 
qŜ− 1

2 Ŝmax over all states with fixed numbers of L − M 1s, M − K 2s 
and K 3s. The meaning of Ŝ is as follows: Since the states 3 are 
non-movers w.r.t. the action of H, we may divide each spin chain 
configuration into K bins separated by K static walls (the 3s). Each 
bin contains a certain assortment of 2s and 1s, in some order. Ŝ
then sums over the “content” of all K bins, where the “content” of 
each bin is defined as the number of 1s (including multiple counts) 
to the right of the 2s within that bin. For details see [2]. One may 
then decode in a computationally efficient and unique way from 
(4) the sizes and multiplicities of the Jordan blocks of the sector 
with excitations numbers L, M, K . To this end, we simply expand 
a given (4) into the (finite) sum

Z all
L,M,K (q) =

∞∑
j=1

N j [ j]q , (5)
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where [ j]q is a q-number

[ j]q = q j/2 − q− j/2

q1/2 − q−1/2
=

j−1
2∑

k=− j−1
2

qk . (6)

The number of Jordan blocks of length j is then given by the co-
efficients N j . Therefore, in order to determine the spectrum of the 
Hypereclectic spin chain, the goal is to find explicit expressions for 
(4). A consistency check should always yield for q → 1 the correct 
number of states

Z all
L,M,K (1) = L!

(L − M)! (M − K )! K ! . (7)

Turning this around, we are looking for a suitable q-deformation 
of (7). Crucial first steps to compute (4) were taken in [2]. We will 
complete them in this letter.

In addition to preserving excitation numbers, the Hamiltonian 
H in (2), (3) possesses another manifest symmetry: Invariance un-
der shifts by one lattice site. This means that we may change 
the unentangled tensor product basis of the state space for fixed 
L, M, K to a new basis, where all basis vectors possess a fixed 
eigenvalue under the action of the shift operator. The L possi-
ble shift eigenvalues are the L-th roots of unity exp(2π im/L), 
m = 0, 1, . . . , L − 1, see e.g. [2] for a detailed discussion. When we 
bring H into JNF, we may take into account the shift symmetry, 
and find the JNF for specific sectors labeled by m. In this letter, we 
will do this for the cyclic states (m = 0, i.e. the shift eigenvalue is 
one), which are of particular interest. Luckily, our formalism im-
mediately carries over, cf. [2], with (4) simply replaced by

Z cyc
L,M,K (q) = Trcyc

L,M,K qŜ− 1
2 Ŝmax , (8)

where one now traces the same diagonal operator only over all 
cyclic states at fixed excitation numbers. The cyclic JNF is then 
again extracted from an expansion exactly as in (5). However, the 
consistency check for q → 1 now leads to

Z cyc
L,M,K (1) = # (cyclic states with fixed L, M, K ) . (9)

The counting of the number of cyclic states is significantly more 
sophisticated than the naive guess “1/L times the trinomial for-
mula in (7)”. The correct result is given by the Pólya enumeration 
theorem. It provides a generating function for these numbers, and 
therefore requires summing over the L, M, K (we assume the pres-
ence of at least one 3), where the variables x, y, z keep track of the 
number of 1s, 2s and 3s:

∞∑
L=1

L∑
M=1

M∑
K=1

Z cyc
L,M,K (1) xL−M yM−K zK

= −
∞∑

n=1

φ(n)

n
log

1 − xn − yn − zn

1 − xn − yn
.

(10)

Here φ(n) is Euler’s totient function, defined as the number of pos-
itive integers less than n that are coprime to n (i.e. the number 
of those elements of {1, . . . , n − 1} whose only divisor common 
with n is 1). Clearly, if n is prime, then φ(n) = n − 1, and if n is 
not prime, φ(n) < n − 1. A very nice physicist’s derivation of the 
general form of Pólya’s enumeration theorem is given in [3], see 
also.1 The denominator of the logarithm’s argument in (10) serves 

1 In the notation of [3], their generating function for the beads z(x) has to be 
replaced by x + y + z (respectively x + y for the subtraction of the K = 0 states) in 
order to derive (10), and by bin(x, y, z, q) in order to derive (22).
2

to subtract the contributions from the K = 0 states, i.e. the ones 
without at least one 3. Our goal is to find, in light of (8), a suitable 
q-deformation of (10).

It should be pointed out that the Hypereclectic Hamiltonian H
is part of the one-loop dilatation operator of a strongly twisted, 
double-scaled deformation of N = 4 Super Yang-Mills Theory that 
has been christened (dynamical) fishnet theory, see [1,2,5,6] for 
more details and references therein. In this field theory application, 
however, one should restrict the attention to cyclic states only, see 
above. We would also like to point the reader to the recent work 
[7,8], where a complementary approach to determining the spec-
trum of the Eclectic spin chain was presented.

2. All-sector solution of the chain

The K = 1 case Let us start with a single bin. This case was already 
solved in a completely satisfactory fashion in [2], and we will just 
state the result without derivation. Define[
� + m

m

]
q
:=

m∏
k=1

q
�+k

2 − q− �+k
2

q
k
2 − q− k

2

(11)

to be the q-binomial coefficients in the conventions used in the 
theory of quantum groups. Clearly they are symmetric under the 
exchange q → q−1. For q → 1 (11) turns into the ordinary bino-
mial coefficient 

(
�+m

m

)
. The K = 1 partition function in (4) was then 

found to be

Z all
L,M,1(q) = L Z cyc

L,M,1(q) with Z cyc
L,M,1(q) =

[
L − 1

M − 1

]
q
. (12)

We thus know the result for both all states as well as for cyclic 
states. In fact, Pólya counting is trivial for K = 1, as the single state 
3 always prevents non-trivial symmetries under the action of the 
shift operator. Put differently, the 3 is marking a specific site of the 
chain.

In light of the discussion following (4), we now consider the 
trace over all states that are composed of all distinct configurations 
of 1s and 2s with a single 3 to the right, i.e. taking values in the 
set

A = {|3〉 , |13〉 , |23〉 , |113〉 , |123〉 , |213〉 , |223〉 , . . .} . (13)

Note that A ⊂ ⊕∞
L=1

(
C3

)⊗L
. Using (8), (12), we define

bin(x, y, z,q) := z TrA
[

x�̂ ym̂qŜ− 1
2 Ŝmax

] (
Ŝmax = �̂m̂

)

=
∞∑

L=1

L∑
M=1

Z cyc
L,M,1(q) xL−M yM−1z ,

(14)

where �̂, m̂ count the numbers of 1s resp. 2s of a state in A. Ŝ
is the “content” of our single bin as defined after (4). We may 
explicitly express the function “bin” as a sum over a product in 
two different ways:

bin(x, y, z,q) = z
∞∑

m=0

ym
m∏

�=0

1

1 − q�− m
2 x

= z
∞∑

�=0

x�

�∏
m=0

1

1 − qm− �
2 y

.

(15)

The case of general K We encode the partition functions for the 
Hypereclectic spin chain at fixed L, M, K (all cyclicity sectors) into 
a grand-canonical partition function through
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Zall(x, y, z,q) =
∞∑

L=1

L∑
M=1

M∑
K=1

Z all
L,M,K (q) xL−M yM−K zK . (16)

Consider now an object X and the generating function

Z(X) = − log(1 − X) =
∞∑

k=1

1

k
Xk . (17)

Its combinatorial meaning is a sum over cyclic arrangements of k
objects, each with a symmetry factor of 1/k (or a “necklace” made 
from k beads “X”). We can mark one bead by the operation

X
∂

∂ X
Z(X) = X

1 − X
=

∞∑
k=1

Xk . (18)

This stands for a sum over all linearly ordered arrangements of the 
k objects X (i.e. the necklace has been opened at the marked bead, 
without removing the latter). In generalization of (18), we can now 
write down an exact expression for (16) in terms of the K = 1
solution (14) by taking X := bin(x, y, z, q) and replacing X ∂

∂ X by 
the first order differential operator D := (

x∂x + y∂y + z∂z
)
:

Zall(x, y, z,q) = D (− log (1 − bin(x, y, z,q))) . (19)

This works because we now sum over all necklaces whose “bead-
s” are replaced by “strands” taken from the infinite set (13), and 
where we have opened the necklace by marking a specific bead 
inside some strand (as opposed to an entire strand). One easily 
computes from (19)

Zall(x, y, z,q) = D bin(x, y, z,q)

1 − bin(x, y, z,q)

=
∞∑

k=1

(bin(x, y, z,q))k−1 D bin(x, y, z,q).

(20)

Using and generalizing (15), we rewrite it as

Zall(x, y, z,q) =
∞∑

k=0

zk+1

( ∞∑
m=0

ym
m∏

�=0

1

1 − q�− m
2 x

)k

×
( ∞∑

m=0

(m + 1
2 ) ym

m∏
�=0

1

1 − q�− m
2 x

+
∞∑

�=0

(� + 1
2 ) x�

�∏
m=0

1

1 − qm− �
2 y

)
. (21)

This explicit grand-canonical generating function vastly improves 
eq. (4.30) in [2]: We no longer need to sum over partitions, nor 
consider any implicit symmetry factors.

3. Cyclic sector solution of the chain

Our derivation of the partition function of the full state space, 
using a “second type of spin chain” of length K (instead of L), and 
whose “spins = bins=strands” take values in the (infinite) list of 
A in (13) (instead of the set {1, 2, 3}) may also be nicely adapted 
to the cyclic state space. We simply apply the Pólya enumeration 
theorem to this “non-compact” spin chain, with infinitely many 
possible states per site. In fact, as also explained in the transparent 
derivation in [3], the theorem is also valid for this case: What en-
ters is the generating function (see again [4]) of the states at one 
site: In the second, non-compact chain of length K this is essen-
tially bin(x, y, z, q), instead of the generating function x + y + z of 
the first, compact chain of length L. Pólya’s theorem then yields
3

Zcyc(x, y, z,q) = −
∞∑

n=1

φ(n)

n
log

(
1 − bin(xn, yn, zn,qn)

)

=
∞∑

L=1

L∑
M=1

M∑
K=1

Z cyc
L,M,K (q) xL−M yM−K zK .

(22)

One may check, that this expression indeed reduces back to (10)
for q → 1. In fact, (22) is the q-deformation of (10) we had been 
looking for. As in (5), this determines the Jordan spectrum of the 
cyclic sector after expanding Z cyc

L,M,K (q) into q-numbers.

4. An example

Let us illustrate the power of the above generating functions in 
one concrete example: L = 9, M = 6, K = 3. It corresponds to the 
Hypereclectic spin chain of length nine, with three 1s, 2s and 3s 
each.

All sectors Using Mathematica™, one easily finds within seconds 
the coefficient of x3 y3z3 in the series expansion of the explicit 
formula (21), i.e. in light of (16)

Z all
9,6,3(q) = 9q−9/2 + 9q−7/2 + 36q−3 + 36q−5/2 + 72q−2

+ 156q−3/2 + 162q−1 + 234q−1/2 + 252 + 234q1/2 + 162q

+ 156q3/2 + 72q2 + 36q5/2 + 36q3 + 9q7/2 + 9q9/2 .

(23)

From (7) there are Z all
9,6,3(1) = 9!/(3!)3 = 1680 states in this sector. 

We immediately rewrite this with (5), (6) as

Z all
9,6,3(q) =90 [1]q + 78 [2]q + 90 [3]q + 120 [4]q + 36 [5]q

+ 27 [6]q + 36 [7]q + 9 [10]q .
(24)

From this we can read of the JNF:

JNFall
9,6,3 = (109,736,627,536,4120,390,278,190). (25)

The notation is the same as in [2], i.e. there are 9 Jordan blocks of 
size 10, 36 blocks of size 7, and so on. We have verified this JNF 
with a Mathematica™ program directly applying the linear algebra 
method detailed in eqs. (4.24)-(4.26) of [1] to the Hamiltonian H
in (2).

Cyclic sector Using once again Mathematica™, one quickly finds 
the coefficient of x3 y3z3 in (22):

Z cyc
9,6,3(q) = q−9/2 + q−7/2 + 4q−3 + 4q−5/2 + 8q−2

+ 18q−3/2 + 18q−1 + 26q−1/2 + 28 + 26q1/2 + 18q

+ 18q3/2 + 8q2 + 4q5/2 + 4q3 + q7/2 + q9/2 .

(26)

For q = 1 this agrees with the number of Z cyc
9,6,3(1) = 188 cyclic 

states with three 1s, 2s and 3s each, as predicted by the “un-
deformed” Pólya counting formula (10). Note that (see paragraph 
above) 1680/9 	= 188: Pólya counting is non-trivial in this sector. 
In consequence, we also must have Z all

9,6,3(q) 	= 9 × Z cyc
9,6,3(q). In fact, 

we may reexpress (26) as

Z cyc
9,6,3(q) =10 [1]q + 8 [2]q + 10 [3]q + 14 [4]q + 4 [5]q

+ 3 [6]q + 4 [7]q + [10]q ,
(27)

which should be compared to (24). The JNF then reads

JNFcyc
9,6,3 = (10,74,63,54,414,310,28,110). (28)

It should be compared to (25).



C. Ahn and M. Staudacher Physics Letters B 835 (2022) 137533
5. Conclusion and open problems

In conclusion, we have exactly computed the partition func-
tions Z all

L,M,K (q) (4) and Z cyc
L,M,K (q) (8) of the Hypereclectic spin 

chain model. This was done by providing explicit formulas for their 
grand canonical versions Zall(x, y, z, q) (16) and Zcyc(x, y, z, q)

(22). The main advantage over the formula (4.30) for all states in 
[2] is that we no longer need the implicit symmetry factors S�,m . 
Also, we can now treat the cyclic sector in generality.

Given the arguments in [2], our expressions should then pro-
vide the exact spectrum of Jordan blocks of the Hypereclectic spin 
chain. However, this still hinges on our non-shortening conjecture in 
[2]. While we have extensively checked this conjecture — and the 
L = 9, M = 6, K = 3 example worked out for this letter is another 
non-trivial test — it would still be important to prove it. Particu-
larly desirable would be a proof based on the integrability of the 
Hypereclectic spin chain [1]. Here we find the appearance of q-
numbers (6) and q-binomials (11), first noted in [2], very promis-
ing, as they are ubiquitous in the theory of quantum groups. The 
latter form the mathematical foundation of many integrable mod-
els.

The Hypereclectic Hamiltonian H in (2) is a special case of 
a more general integrable, non-hermitian three-state model, the 
Eclectic spin chain of [1]. In its cyclic sector, it is related to the one-
loop dilatation operator of “dynamical fishnet theory”, a strongly 
twisted, double-scaled a three-parameter deformation of N = 4
Super Yang-Mills Theory, see [1,2,5,6] for details and references. 
Its Hamiltonian reads

H =
L∑

�=1

(
ξ1 P

�,�+1
1 + ξ2 P

�,�+1
2 + ξ3 P

�,�+1
3

)
. (29)

Dropping the adjacent-site labels �, � + 1, the (now three) chiral 
permutation operators act as

P1 |32〉 = |23〉 , P2 |13〉 = |31〉 , P3 |21〉 = |12〉 . (30)

They annihilate all other nearest-neighbor tensor product states, 
respectively. We recover (2), (3) for ξ1 = ξ2 = 0, ξ3 = 1. In [1,2] a 
rather surprising universality hypothesis was formulated: If the fill-
ing conditions K ≤ M − K ≤ L − M are satisfied, the spectrum of 
Jordan blocks of the eclectic H in (29) at “generic” values of the 
parameters ξ j is identical to the spectrum of the hypereclectic H
in (2). (If the filling conditions do not hold, we may always sat-
isfy them after a suitable synchronous permutation of the three 
state- and parameter labels.) If this hypothesis holds, along with 
the above non-shortening conjecture, then we have also found in 
this letter the full solution of Eclectic spin chain’s spectral prob-

lem for generic (i.e. not fine-tuned) ξ j . Once again, we hope that 
integrability might provide the means to prove this.

Finally, it would be interesting to interpret our results within 
the framework of dynamical fishnet theory [6], believed to be a 
logarithmic conformal field theory (see [2] for further information). 
For example, is the spectrum of Jordan blocks we found preserved 
beyond one loop?
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