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Abstract

We consider the massless tricritical Ising model(4,5) perturbed by the thermal operator
@13 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac
labels (r, s), that are natural off-critical perturbations of known conformal boundary conditions.
We derive massless thermodynamic Bethe ansatz (TBA) equations for all excitations by solving,
in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer
matrices of thed 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime IV. The resulting
TBA equations describe the massless renormalization group flow from the tricritical to critical Ising
model. As in the massive case of Part |, the excitations are completely classified in temms:of
systems but the string content changes by one of three mechanisms along the flow. Using generalized
g-Vandermonde identities, we show that this leads to a flow from tricritical to critical Ising characters.
The excited TBA equations are solved numerically to follow the continuous flows from the UV to
the IR conformal fixed points.

0 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In integrable Quantum Field Theory (QFT), the Thermodynamic Bethe Ansatz (TBA)
[1,2] continues to be an important method for the study of massive and massless
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Renormalization Group (RG) flows including the study of excited states [3—5]. Moreover
the Tricritical Ising Model (TIM), which is the simplest memhét (4, 5) of the unitary
minimal series [6] beyond the critical Ising mod& (3, 4), remains a rich example for
studying both thermal and boundary flows [7—-10].

In Part | of this series (hereafter referred to as PCAI [11]) we considered the massive
tricritical Ising model M (4, 5) perturbed by the thermal operatpf 3 in a cylindrical
geometry and systematically derived the TBA equations for all excitations by using a lattice
approach. More specifically this was achieved by solving, in the continuum scaling limit,
the TBA functional equation satisfied by the double-row transfer matrices of thattice
model of Andrews, Baxter and Forrester (ABF) in Regime Il [12]. In this paper we turn
our attention to the massless tricritical Ising model which is obtained as the continuum
scaling limit of the A4 lattice model in Regime IV. Our goal is to systematically derive
and study the massless TBA equations which describe the renormalization group (RG)
flow from the tricritical M (4, 5) to critical M (3, 4) Ising model. We apply the methods
developed in PCAI and use the concepts and notations introduced in that paper without
further elaboration.

The layout of the paper is as follows. In Section 2 we discuss the classification of exci-
tations usingm, n) systems including a description of the three mechanisms by which the
string contents change along the flow. In Section 3 we derive in detail the massless TBA
equationsin thér, s) = (1, 1) vacuum sector. We do not discuss the very similar derivation
of the TBA equations in the other 5 sectors. The numerical solution of the TBA equations
to yield continuous flows is discussed in Section 4. We finish in Section 5 with a brief
discussion.

2. Classification of excitations and flows

For small perturbations, the scaling limit of the excitations in Regime IV of the
Ay lattice model are classified by precisely the samen) systems [13,14] as at the
conformal critical point [15] and throughout the massive Regime 11l [11]. Unlike the
massive case, however, we find that in the massless regime the string content can change
by one of three mechanisms along the flow. This was first observed empirically by direct
numerical diagonalization of a sequence of finite-size transfer matrices approaching the
scaling limit

mR . v

n=- _N—>gor,nt—>0N|t| , v=5/4 (2.1)
for modest values of the system si¥eand O< m R < 5 and is confirmed by our numerical
solutions of the TBA equations. Hege measures the perturbation strength anid the
departure-from-criticality variable. The mass and continuum length scalg usually
occur in the single combinatiom R. Notice that in the finite-size scaling we use the
Regime Il correlation length exponent= 5/4 even though the actual [16] correlation
length exponent in Regime IV i§ = 5/2.

Let us consider the vacuum sector with boundary conditiosn) = (1, 1). The excita-
tion energies are given by the scaling limit of the eigenvalues of the double-row transfer
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matrix D (u), or equivalently the normalized transfer matrix), whereu is the spectral
parameter. The two relevant analyticity strips in the complgdane are, respectively,

A 3\

—3 < Reu) < > 2\ < Re(u) < 4 (2.2)
wherei = /5 is the crossing parameter. The excitations are classified by their string con-
tents

m; = {number of 1-strings in strip=1, 2},
n; = {number of 2-strings in strip=1, 2}. (2.3)
At the conformal critical pointfz R = 0) the string contents satisfy thie:, n) system

1
m+n= E(Nel~|—Im), (2.4)

wherem1, m» and N are evenm = (m1, m2), n = (n1,n2), e1 = (1,0), andZ is the A,
incidence matrix with entrieZ; , = 8,;_4,1. For the leading excitationgy, m2, n, are
finite butn; ~ N/2 asN — oo.
As explained in PCAI, an excitation with string contént, r) is uniquely labelled by
a set of quantum numbers
1=(1®1?) =1, 6P, .. 1211212, ... 12), (2.5)

> tmy > fmop

where the integer%}” €{0,1,2,...} with i = 1,2 give the number of 2-strings whose
imaginary partsw,i” are greater than that of the given 1—strizm§8. The 1—strings;f) and

2-stringsw§i) labelled by 1 are closest to the real axis. The quantum numgfémtisfy

nizl’>0)>->19>0 i=12 (2.6)

For given string contentm, n), the lowest excitation occurs when all of the 1-strings are
further out from the real axis than all of the 2-strings. In this case all of the quantum
numbers vanish‘) = 0. Bringing the location of a 1-string closer to the real axis by
interchanging the location of the 1-string with a 2-string increments its quantum number
by one unit and increases the energy.

Although we do not make use of it here, we mention in passing that, for the tricritical
Ising model, there exists a bijection [17] between the patterns of 1- and 2-strings classifying
the eigenvalues of the double-row transfer eigenvalues and RSOS paths ©his has
as a consequence that the finitized partition functions (Virasoro characters) satisfy the
same recursions [12] as the one-dimensional configurational sums of the Corner Transfer
Matrices (CTMSs).

2.1. Three mechanisms for changing string content

Let t(u) be the normalized double row transfer matrix as in PCAI. In Regime IV the
eigenvalues(u) of £ (1) are doubly periodic meromorphic functions in the period rectangle

A 9

eriod rectangle- | — =, —
peri g ( 5

) X (—mie, wie), (2.7)
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Fig. 1. Upper part of the period rectangle/2,2)) x (—nie, wie) in the complexu-plane for theA, lattice

model in Regime IV showing the putative strips 1 and 2. The schematic location of zeros reflects the complex
conjugation symmetry and the symmetry (2.9). In the scaling limit the imaginary periedso and it is the
behaviour of the zeros near the indicated scaling edge @) lsm /2 that is relevant.

wheres is related to the departure-from-criticality variablby

t =—exp(—2re). (2.8)

However, in Regime 1V thel, lattice model also admits the symmetry

twutm/24mie)=1t(u) (2.9)

so we can restrict ourselves further to the rectangle./2,21) x (—mie, wie). In
particular, this means that fat R > 0 the distinction between the two strips effectively
disappears—the two are joined along the scaling edge@® s e /2 in the scaling limit
(2.1). This allows zeros to move between the putative strips 1 and 2 by crossing the scaling
edge. The combination of strips 1 and 2 in the upper half plane into one extended strip is
shown in Fig. 1. There is a complex conjugation symmetry between the upper and lower
half planes. Note that this is consistent with the picture at the conformal point since in the
limit mR — 0 the zeros are infinitely far below (strip 1) or infinitely far above (strip 2) the
scaling edge as — .

Let us consider the extended analyticity strip./2 < Re(u) < 31/2. Empirically,
we find that asn R is increased from O the strip 1 zeros approach the scaling edge at
Im(u) = me/2 from below while the strip 2 zeros approach the scaling edge from above.
Potentially, this allows zeros to collide or migrate from one strip to the other. In fact we
find that the zero patterns change by one of the following three mechanisms which occur
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Fig. 2. Schematic representation of the three mechanisms A, B, C by which the string contents change under the
flow. In each case the two circled zeros leave the analyticity strip as indicated by the arrows. In mechanism A two

1-strings leave the strip whereas in mechanisms B and C it is a 2-string that leaves the strip. Note that only the
location of the 1-strings enter the TBA equations.

at the scaling edge:

A. If 1-strings are closest to the scaling edge in both strips 1 and 2 then these 1-strings
collide and move symmetrically in opposite directions parallel to the scaling edge until
they reach Re:) = 0, 1. At this point the two zeros no longer contribute and they can
be removed from the analyticity strip. This mechanism applié,éll?fz 1,7(122) =0.

B. Ifa 2-stringis closest to the scaling edge in strip 2 and a 1-string is closest to the scaling
edge in strip 1 then the 2-string moves to the scaling edge and leaves the analyticity
strip. This mechanism applies§ 11) =0 andI,§122) > 0.

C. Otherwise, if a 2-string is closest to the scaling edge in strip 1, then this 2-string moves
to the scaling edge and leaves the analyticity strip. This mechanism appﬁ,@&ifo.

Similar mechanisms are also observed [8] in the boundary flows of the tricritical Ising
model. If m2 = 0 only mechanisms B and C apply according to Whethﬁél)rz 0 or

I,i,ll) > 0. If m1 = m2 = 0 then mechanism C applies. In each of the three mechanisms
exactly two zeros are removed from the extended analyticity strip. These three mecha-

nisms are shown schematically in Fig. 2. They are confirmed by the numerics discussed in
Section 4.

2.2. Operator flow
Remarkably, as we explain in this subsection, the empirical rules giving the three

mechanisms A, B, C for changing string contents under the flow suffice to determine a
map in each sectdr, s) between finitized characters for the UM R =0, ¢ = 7/10) and
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Table 1
Flow of primary operatorsr, s) — (’, s") displayed in thed4 Kac table
Al .5 A3

r',s!

©“
©“
[

4l 3 0 4/(1,3) (1,2 1.1 ali o
3 % 8% Tlo 3/(2,3) (2,2 (2,1 3% T16 0
2| 5 2 7 2en 22 @3 = o 11
10 7 3 1@y w2 @3 1o L 3
12 3r 1 2 3 r 12 37

IR (mR = o0, ¢ = 1/2) fixed points. Since two zeros leave the analyticity strip under the
flow, this map from the UV to IR takes the form

V@ e 3N @, 1<r<2, 1<5.r<3, 1<s<4. (2.10)
We find that, in the presence of a boundary, the primary operétars of the tricritical
Ising model flow to primary operatoré”’,s’) of the critical Ising model as shown
in Table 1. This pattern of flows differs fundamentally from the flow of operators
observed with periodic boundaries. For example, with periodic boundaries, the spinless
operator(A, A) = (1/10,1/10) — (1/2,1/2) whereas in the presence of a boundary
A=1/10—~ 0. These differences arise because the extra zeros associated with the
boundary participate in the flow mechanisms.

2.3. RG flow frony? ;(¢) to x3 1(¢)

In the vacuum sectofr, s) = (1, 1) the A4 (m, n)y2 System of the tricritical Ising
model is

1 1
m1+n1=§(N+2+mz), m2+n2=§m1 (2.11)

and these relations determing andny in terms ofm1 andmy. Similarly, letm andn
be the number of 1- and 2-strings of the critical Ising model in the vacGum = (1, 1)
sector satisfying thds (m, n) y system

m—}—n:%(N—i—m) or n:%(N—m). (2.12)

Thenm andn are given by the total number of 1- and 2-strings in the extended strip in the
IR limit

mi+mz2—2, A, | n1+n2, A,
mq + mo, B, C, ni+n2—1 B, C

The mechanisms A, B, C determine which energy level flows to which energy level
under the RG flow. As explained in [15] and PCAI, the energies at a conformal point are

(2.13)
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Table 2

Mapping of the first 22 energy levels in thie s) = (1, 1) sector under mechanisms A, B or C. The energies,
string contents and quantum numbers are shown in both the UV and IR regimes. The degeneracies of all the
levels reconstruct the mapping between the tricritical and critical Ising chara(ﬁel-(q) > xfl(q)

Mech. E my ma ny I m 14 E’
c 0 0 0 0 O 0 O 0
B 2 2 0 1 (0,0 2 (0,0 2
B 3 2 0 1 (1,0 2 (1,0 3
B 4 2 0 1 (2,0 2 (2,0 4
B 4 2 0 1 11 2 11 4
B 5 2 0 1 3,0 2 3,0 5
B 5 2 0 1 2.1 2 2.1 5
B 6 2 0 1 (4,0) 2 (4,0) 6
B 6 2 0 1 3.1) 2 3.1) 6
B 6 2 0 1 2,2 2 2,2 6
A 6 4 2 0 (0,0,0,0[0,0) 4 (0,0,0,0) 8
B 7 2 0 1 (5,0 2 (5,0) 7
B 7 2 0 1 4.1 2 4.1 7
B 7 2 0 1 3,2 2 3,2 7
A 7 4 2 0 (1,0,0,0(0,0) 4 (1,0,0,0) 9
B 8 2 0 1 (6,0) 2 (6,0) 7
B 8 2 0 1 (5.1) 2 (5.1) 7
B 8 2 0 1 4,2 2 4,2 7
B 8 2 0 1 3.3 2 3.3) 7
A 8 4 2 0 (2,0,0,0/0,0) 4 (2,0,0,0) 10
A 8 4 2 0 (1,1,0,0[0,0) 4 (1.1,0,0) 10
B 8 4 0 2 (0,0,0,0) 4 1,131,111 12

determined by the string contemt and the patterns of zeros in the compieplane. In
terms of quantum numbers the precise mapping of energy levels under the flow is given by

I=(10 50 a2 2, 12 s = (11, 1) (2.14)
where
I =ny+ 19, j=12....m—1,
A { y T2 (2.15)
m1—1+k:n2_lm2—k’ k:1,2,...,m2_1,
5 {1;:n2—1+1}21), j=12...,mi, (2.16)
Ir/lll+k:n2_lrf’12)+l_k’ k=192a"'9m2'

Details of this mapping for the first 15 energy levels in the) = (1, 1) sector are shown
in Table 2. For given string contemt, the base energy levdl,, is determined by the
Cartan matrixC

(2.17)
g™, Asz.

The base energy occurs when the location of all of the 1-strings are further from the real
axis than the locations of all of the 2-strings. Additional excitation energy is generated by
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permuting the order of 1- and 2-strings in each strip as dictated by the sum of quantum
numbers/; in each strip and is given by the Gaussian polynomialg-binomials

Im—1

[mr—nkn} [m+nL ZZ Zq11+ Iy

11=01,=0 I,=0

(@ m+n
= @ "7 (2.18)
0, otherwise

with theg-factorials(g),, = (1—¢q) --- (1 —¢™) form > 1 and(q)o = 1. The energy is
increased by one unit each time a 1-string is brought closer to the real axis by interchanging
its location with the location of an adjacent 2-string. The product ofgvimnomials is the
generating function for the conformal spectra with given string content in each strip. The
g-binomials satisfy the properties

R e |

m+n mn | m+n
o] g [min] 219
q 1/q

The charactexfl(q) is the generating function for the tricritical Ising conformal spectra
in the (1, 1) sector. Explicitly, using the recursion (2.19), we decompose it into three terms

4, _ 1 mi1+n mo2+n
Xliv ()=6] 7/240 Z quCm|: 1 1:||: 2 2:|

mi mo
(m,n)y 42
—7/240 L (m2—mymo+m?
=q / Z qz( 1—mima-+ms)
mq,mp even

mi+n1—1||mo+nr—1
X
m1—1 mo—1

+qm2[m1+n1—1} [m2+n2—1}

m1—1 mo
+gm |:m1+n;111—1i| |:m2m+2n2i| } (2.20)

These three terms correspond precisely to the energy levels effected by mechanisms A, B
and C, respectively. So simply reading off the conformal energies from the respective zero
patterns after applying each mechanism we find the following mapping between finitized
characters

4,N+2 - 12
X11+ @ rq 1748 Z g2"
m1,mp even

« | gr2mi—Dtna(mo=1) | 1M1 +n1—1|[{ma+n2—1
mp—1 mo—1 1q
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+ (n2—Dm1+(na—Lymy |:m1 +n1— 1i| |:m2 +n2— 1]
q
mi—1 mo 1q

+qn2m1+n2m2 |:m1+n1_1:| |:m2+n2:| }
1/q

m1 my
1.2
=4q 1748 E q?

m even

_ —1||ma+ny—1
% np(m1—1) [ml-i-nl } [ 2 }
m§en{q 1= 1 mz = 1

4 g2 Dm [ml +n1— 1] [m2+n2 - 1]
m1—1 mo

+ g"?m mi+ny1—1 m2+np
a4 mi1 m2

— g8 Z q%mZ Z q%mifmml

m even m1 even

o gm=mir2 | (N +m—m1+2)/2 || (m1—2)/2
q mp1—1 m—mq1+1

bgm [(N +m— m1>/2] [(ml — 2)/2}

mp—1 m—m1

+|:(N+m—ml)/2:||: m1/2 ”

mi m—mq

_ 18 Z g3 [(N—l—m)/Z} =xfj{v(q)~ (2.21)

m
m even

Notice that, after the mapping, thebinomials of strip 2 are with respect tg/d. This

is because strip 2 is turned upside down when it is placed on top of strip 1 to form the
extended strip. Thesgbinomials are naturally replaced hybinomials ing using (2.19).

All integers are then eliminated in favour ef and m1 using the appropriate relations
which apply to the mechanism corresponding to each of the three terms. The final equality
holds because of the remarkable generalizéthndermonde identity which is proved in
Appendix A

|:(N+m)/2:| _ Z q%m%—mml

m
m1 even

x m—%m1+2 (N+m _m1+2)/2 (ml—2)/2
q m1—1 m—m1+1

mp—1 m—miy

+[(N+m—m1)/2][ m1/2 ]} (2.22)

mi m—mi

L [(N +m— ml)/z} [(ml —~ 2)/2}
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The finitized Ising characte(l 1 () is not the usual finitized character. In the limit> 1
it gives the correcti4 counting

Ilm X1 ) N(g) = Z ((N +m)/2> _ [Azwz]l,l’ (2.23)

m
m even

whereas the usual finitized Ising character gidgsounting

lim g7/ 3 g} 5m [Nnéz} ) (an):[AgV]m (2.24)

m even m even

whereA4 and A3 denote the adjacency matrices.
2.4. RG flow in other sectors

The analysis of the flow using the three mechanisms A, B and C can be extended to
each of the sectorg, s) with »r = 1,2, s = 1, 2, 3. In this way we obtain six generalized
g-Vandermonde identities as follows:
x11 N evenm even:

|:(N+m)/2] Z q3m1/2 mmyq

m1 even

X{ [(N+m—m1)/2} [ my/2 ]
mq m—mq
Lgm [(N+m —ml)/z} [(ml— 2)/2]

m1—1 m—miy
4 gm-tmj2r2| (N+m—m1+2)/211 (m1—2)/2 |
q mi1—1 m—mi1+1||’
(2.25)
x3.1 N even,m odd:

|:(N+m+1)/2:|= Z q3m§/2_mml{|:(N+m—m1+l)/2:||: mi/2 }

m m m—m
m1 even 1 1

—my
ta mp—1 m—miy

|:(N+m —m1+1)/2:| [(ml—Z)/z]

m1—1 m—m1+1
(2.26)

4 g Tm/242 [(N+m —m1+3)/2] [(ml—Z)/Z] };

x2.2 N even,m even:

|:(N+m)/2:| Z g3m/2-mm

m1 even

" { [(N+m—m1)/2H m1/2 ]

m1 m—mi
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4 gmsm/2H1 [(N+m —m1—2)/2] [ my/2 1]

mq m—mq—
m—5my/2+1| (N +m —ma)/2 my/2 .
ta |: mp—1 m—m1+1||’ (2.27)

x2,1 N odd,m even:

|:(N +m — 1)/2:| _ Z q3m§/2—mm1
" mi odd

y {qml/z[uv +m—my— 2)/2} [(ml + 1)/2]

mi m—mi

g2 [(N +m—my— 2)/2] [(znl — 1)/2]

mp—1 m—m1

4 gm—3mi+3/2 (N+m—m1)/2 || (m1—1)/2 ||,
4 mi—1 m—m1+1]|]|

(2.28)
x1.2 N odd,m even:

|:(N +i’f”ln— 1)/2:| _ Z q3m%/27mm1
m1 odd

y { 332 [(N +m— m1>/2} [ (m1 — 1)/2}

mi—1 m—mi1+1
+qm+2m1+l/2|:(N+m —m1—2)/2} [ (m1 — 1)/2}

mq m—mp—1

g2 [(N +m— m1>/2} [(ml —~ 1)/2] }; (2.29)

mi m—mi

x3.2 N odd,m odd:

|:(N+m)/2:| _ Z g3¥m/2-mm

m
mi odd

N { m—3m1+3/2 [(N +m—my+ 1)/2} [ (my — 1)/2}
q mp—1 m—m1+1

g2 |:(N +m—mq — 1)/2] [ (m1— 1)/2]

mq m—mq—1
g2 [(N +m—ma + 1)/2} [(ml - 1)/2] } (2.30)
m1 m—miq

These identities are simplified and proved in Appendix A.
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3. TBA equationsin Regime |V

Recall from PCAI that the normalized double row transfer matrix is defined by

B i+ 2, patp) 1
t(w) = Srs(u)Su) |:l 1+ 3h. p)0rtu T A, P)i| D), (3.2)
where
. 91(2u — A, p)2
S = S =3 Py 2u T 7 ) (3-2)
and
Srs@) = (=1 hy(u — EL)h—r (u + EL)hs(u — ER)h—y (u + &R) (3-3)
with
o () = V1(x, )1+ B —r)A, p)ti(u+ (A —r)A, p) ’ (3.4)
ﬁl(”? p)ﬂl(u - )‘7 p)ﬂl(u + 2)‘9 P)
) = Ba(rh, p)Pa(u+ (B —5)A, p)Pau+ (1—s)A, p) (3.5)

Va(u, p)0a(u — 1, p)Va(u + 24, p)
Moreover, the normalized transfer matrix satisfies [18] the universal TBA functional
equation
ta)tw+2) =1 +t(u+ 3% (3.6)
independent of the boundary conditiéns). For Regime 1V, the nome is pure imaginary
with p =ie "¢,

3.1. UV massless TBA:, s) = (1, 1)

In this section we derive the TBA equations for tires) = (1, 1) boundary by solving
the TBA functional equations in the scaling limit for evéh We follow closely the
derivations in [15,19] and PCAI [11]. The derivation for other boundary conditions is
similar. We begin by factorizing the eigenvalu@) of ¢ («) for largeN as

t(u) = f(u)gu)l(u), 3.7)

where f(u) accounts for the bulk orde¥ behaviour, g(u) the order-1 boundary
contributions and(x) is the order-1IN finite-size correction. We will solve fof (u), g(u)

and ther/(u) sequentially. For the orde¥- behaviour the second term on the r.h.s. of the
TBA functional equation (3.6) can be neglected giving the inversion relation

ffu+xr =1 (3.8)
In the physical strip 1, the solution [20] with the required analyticity is

9 E_5_u’t5/2 2N

Pa(% + 2, t[5/2)

o=
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The solution in strip 2 satisfies the same inversion relation and is given by the
symmetry (2.9).

In the two analyticity strips labelled by= 1, 2 we define generically for the functions
h=t, f, g,[ the notations

hl(x)zh(&~|—i—x>, [Im@)| <, (3.10a)
2 5

ho(x) =h(3x+ %) | Im@)| <, (3.10b)
Hi(x) =14 h1(x), Ho(x) =1+ ha(x) (3.10c¢)

and we assume the relevant functions have the scaling form
hi(x)= lim h(x +logN). (3.11)
N—o0
For example, we see that

log f1(x) = —4u2e*. (3.12)

As in Regime lll, we next have to solve by Fourier series the inversion relations for the
order-1 boundary terms

gl(x—i%)g1<x+i%> =1, (3.13a)

g2<x—i%>g2(x+i%> =G1(x). (3.13b)

To find g;(x) we need to consider the zeros and poles introduced by the prefactor in
(3.1). We find the order-1 zeros @i(u) cancel exactly the poles ¢ 1(«). Taking into
account periodicity, the prefactor exhibits poles at — +Ui7re, 32 +oirme, 2k+oine,

4 +oime, 2 +i%F, 3)\ +i%, 1}{‘ +i%, 13}‘ +i% and double zeros at= % 5 +iome,

3\ +iome, T & z”e, 04 ize wherea = 0,+1. The solution forgs(x) with this
analyticity but restricted to the stripm(x)| < 3n /4 is

935 — 5. 1117 D035 + &, |r|5/4>[z91 i |r|5/4)}2
9a(F — L. (1194045 + 5. 11154 Lo2(F, [115/4)

By comparing the expected pattern of zeros and poles@f — in/2)g2(x + i /2) with

the analyticity ofG1(x), we find that this functional relation is satisfied inside the strip
[Im(x)| < 37”. We observe thatz(x)/g1(x) is free of zeros and poles in this strip. Similarly
G1(x) is analytic and nonzero, but only inside a narrower gthip(x)| < 7. Hence in this
smaller strip

g1(x) =— (3.14)

logga(x) =loggi(x) + e xlogG1(x), (3.15)
where the kernel in Regime IV is given by

92(0, |£1%)93(0, [t|%)93(ix, |¢]°)

3.16
2m9(ix, |1]°) (3.10)

e(x)=
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Note that the signs of; (x) are chosen to match the corresponding expressions [15] in the
tricritical limit # — 0. They can be determined numerically from the eigenvalues of the
transfer matrix with reak in the physical range & u < A/2. The functional equations for
the finite-size corrections

ll(x _ %)Zl<x + %) = To(x), (3.17a)

im im T1(x)

lz(x > )lz<x + > ) = G10) (3.17b)
can be converted to Nonlinear Integral Equations (NLIE) by standard techniques [21,22]
where the key input is the analyticity determined by the patterns of zeros. Suppose that
1-strings are located in the upper half plane in the extended striplY 24 ivsy, ..., A/2+
ivy,,} below the scaling edge and &t/2 + iw1,...,1/2 + iwy,,} above the scaling
edge. Then the zeros in strip 2 are determined by the symmetry (2.9) and occur at
{Br+i(me —v1),....3h+i(me —vpand{3r +i(wre —w1), ..., A +i(we — wi,)}.
To account for these zeros, we note that the functions

.5v; 5 . .5v; 5

ll(X)l_[ Do(iz —i=h, |t12)02(i5 +i=55, t]2)
.5v; 5 . . 5v; 5

jm1 U1l — i, [t 2)016 5 + iP5, [t]2)

. .5 5 . .5 5
T2 Doy — i 2Pk, [112)92(i 5 +i 255, 11]2)
X

, (3.18)
(% . Sy gﬁ . x . Swy g
k=10105 — i, |t1]2)010 5 + 1555, [1]2)
» )l—[ﬁao S i %0 1013)93 % +i S [1]3)
2lx Bu, 5. - .x .50 .5
j=1 04 % =i 28 1112)0aG % +i 5, 16]7)
my . x . Buy 5 . x . Swy 5
U3(i5 — 155, |t|2)03(i5 + 155, |t]2

3(2 2||)3(2 2||) (3.19)

. .5 5 . .5 5
k=1 Va(i — i 355, |1]2)04(i 5 4 i 25~ |1]2)

are free of zeros and poles inside their respective analyticity strips. The products of elliptic
functions satisfy the inversion relatiohgx — %)li (x + %) =1,i=1,2and are doubly-
periodic.

It follows that

logt1(x) =log f1(x) +loggi(x) + & *logT2(x) + C1

+§:Io ﬁl<i£—i%,|t|g)m<ﬂ+i% |t|%>
5 5
T vy — i B 113000 + i S 1113)

M2 (S — B (30 i D |3
+Z|09 1( 2 2 |712) 1(2 2 |] )7 (3.20)

. .5 5 . .5 5
o1 D2z — %55, [t[2)02(i5 + i %55, [t]2)
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log#z(x) = log f2(x) + Ioggz(x) +exlogTi(x) — e *xlogGi(x) + C2
miq . |t 9 v] ¢
+Zlog Da(i5 155 11]2) 45 +it 112)
o Dz —it ItIZ)ﬁa(t +t |t|2)

M2 o GE — i 113 0aG s 41 |3
+Z|Og a( 2 2 |7]2)94( 2 2 |] )7 (321)

. .5 5 . .5 5
m1 U3z — i, [t[2)03(i5 + i35k, [1]2)

wheree(x) is the kernel (3.16). As in [15], the integration constafifsvanish. So now
taking the scaling limit yields

X 2 -1, —x .
pet + V24l +kxlogTo(x)

logi(x) = —4u’e” + log

_ ﬁ+ Mflefx
S 1.0
+Y log tan){é(ﬂj —x— Iogu)]
j=1
+ iz: logtan 1(ﬁ(2) loguw) (3.22)
~ g 2 k X gl’L ) .

Mex+ﬁ+u—le—x

logfo(x) = —4e ™ + log + k % log T1(x)

_ \/é_}_ Mflefx

S 1

+Y log tan)‘[é(ﬂj +x+ Iogu)]
j=1
mo 1

+Y log tan){é(ﬂ;z) +x +log u)], (3.23)
k=1

where the kernel is
k(x)= ! (3.24)
)= orcoshe’ '

In deriving this result we have assumed that the zeros scale as

1 1
log 7| ﬁ;)_ns ﬂ;)

o =4 3.25
vi 4 "5 275 (3.25)
2 2
loglr| | B B

— = 3.26
4 s 2 - 5 (3-26)

or, more precisely, the scaled locations of the zeros are defined by

5

D—  Jim 5vi 4+ -loglt] )= lim 50; +log & 3.27
/3/ N%(LO,I%O( Vi + 4 g| | N%éo,tﬁo vi +log N ’ ( )

@_ S - 1
Suwy + ~ | - | 5wy + log = ). 3.28
T S N Y TN R

N%oo,ta
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Close to the UV fixed point, whem R is small, we must havﬁ(l) <0 andﬂ(z) > 0. Ifwe
define the rapidityy and pseudo-energies(®) by

e — lim 4 (0 —log ﬁ) =@ —logu), i=12 (3.29)
N—o0 N
whereu = m R /4 we obtain the TBA equations

® A
€ (ﬁ)_MReﬁ_bgw_i dﬁ/w
1 - eﬁ _ \/i+6_7} 27 COSK‘[? — 0/)

—00

(l) 2)

- élogtank(— - —) Zlogtan ﬁ— - g)

e’ + 2+ 1 70 5 log(1+ 1)
— 24+ 2m coshy —v')

—0o0

my (l) (2)
— > "log tan?‘(— + ) Zlogtam-( ) (3.30)
=1

To find the Iocat|on$‘3<l) ﬂ<2) of the 1-strings consider the functional equations

b T
t1<x — i§>t1(x +i§> =1+1(x),

t2<x—i%>t2(x+i%> — 14000, (3.31)

atx = —mi/2+5v;, x = —mi/2+ 5wy, respectively. Since the right-hand sides vanish, in
the scaling limit this implies

e2(9) =mRe ¥ — log

. i _,@
tz(ﬁ](l)_7_logu>—_1_e nJ 7“7 j:l,z,...,ml,

<ﬁ<2> i Iogu> == T k=12 . mo (3.32)
or
Ez(ﬂ](-l) - %) =nPri, j=12...m.
el<ﬂ,§2) - %) nPri, k=1,2,...,m, (3.33)
wheren'™ | n (2) are odd integers. These integers are given by their values [15] in the UV

limit as determlned by winding numbers

(1) 2(m1—])—m2+1+21(1) j=12,...,m,

(2) =2mp—k)—m1+1+4212, k=1,2...,m, (3.34)
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wherel = (1(1) .. I(l)|1<2) .. 1<2)) are the quantum numbers (2.5). These integers
(’) can change dunng the flow due to winding of phases. For numerical purposes, a more

useful form of these auxiliary equations is obtained by replagimgth /3(’) —mi/2inthe

TBA equations (3.30). Similar equations can obtained for the locations of the 2-strings.
Repeating the same calculation as in Regime IlI, we find the finite-size corrections to

the scaled energies in Regime IV are

1 RE(R) coshx 1
with

mi o my R
RE(R) =mR|:Z —#; +Z ﬁf)] _ ’”— dﬁel’ log(1+¢~1™). (3.36)
j=1 o

In the UV limit mR — O we recover the critical TBA equations of [15]. Explicitly,
setting® = x + log ., we find that ag« — 0 the location of the 1-strings scale as

ﬁﬁl)—yﬁl)Hogu, j=12...m
B2 =—y® _logu, k=1,2,...,ma. (3.37)

It follows that in the limitm R — O the finite-size corrections to the scaled energies are
given exactly by

2 m
27 7 S a)
Iong(u) —Sln54|:240 4mCm ZZ[ ] (3.38)
i=1j=1
with the finitized partition function
_—7/240 lypem | M1+n1 mp +na
Zn(g)=q DL [ m }[ o ] (3.39)
mi,mp €ven q q

where the modular parametergis= exp(—rsin5uM/N) for M double rows.

We have chosen to write the TBA equations in terms of both strips 1 and 2. However,
in accord with the existence of a single extended strip, the set of TBA equations (3.30),
(3.33), (3.34) and (3.36) can be written in terms of a single strip by using the symmetry
e2() = e1(—1). Explicitly, extending strip 1, we obtain the TBA equations

00 7
e’ +v2+e7? 1 dﬁ,log(1+e*€1(ﬁ))

) =mRe” —| —
a@)=mRe”—log 5 —F 5 " o0 cosiy + ')
—0Q
&)
5
—Zlogtan ﬂ——§>, (3.40)
—~ g mR i (®)

RE(R)y=mR) e Pt o dv e’ log(1+ e ™), (3.41)

=1 00
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wherem = m1 + m> and

B =82, k=12...ma. (3.42)

The auxiliary equations become

el<n—21 — ﬁél)) = nEl)m', £=12....m, (3.43)
where

nP=m—204142f, €=12....m (3.44)
and the quantum numbefgin the extended strip are given by

D
- I =12,...
L e (3.45)
”2_1m+l—e’ L=mi1+1mi+2 ....m,

with no = m1/2 — ma. This symmetry between strips 1 and 2 is manifestly broken in
the UV limit mR — 0 and the IR limitn R — oo. Also these TBA equations need to be
modified in the intermediate regime for mechanism A levels after collision of the 1-strings.

3.2. IR massless TBA:, s) = (1, 1)

For largem R we work with the extended strip 1. In this regime the total number of
1-strings is eithem = m1 +m2 for mechanism B, C o = m1 +m2 — 2 for mechanism A
with quantum numbers = (I3, I, ..., 1)) given by (2.14) to (2.16). Setting

€@ =e1(®) + mmwi = ex(—0) +mmi (3.46)

we now obtain the single TBA equation

0o ! ’
C3) —mRe? —logé tY2He L[ logd e

e — 2+ E_OO coshv + /)
m /7 0
— > logtan P _ —) (3.47)
2 2
=1
with scaling energies
m R 00
RE(R) =mR ;eﬂ% - f a9 " log(1+ =<, (3.48)
= —o0

The auxiliary equations are

e(% - ﬂé> =nymi, £=1,2,...,m, (3.49)
where

n,=2m—0+1+21, ¢=12...m. (3.50)
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The difference between this equation and (3.44), as reflected in (3.46), arises because of
the mzi winding between the previous position of the scaling edgeiay2 (reference
point for ¥ = 0) and the new position of the scaling edgerat.

Setting? = x + logw in the IR limitm R — oo, the locations of the 1-strings scale as

Br=yi+logu, €=12....m (3.51)

and the above equations reduce to the TBA equations of the critical Ising model. Indeed,
the pseudo energies(d) decouple giving the energy of the usual massless free fermions

€' (9) ~mRe™” (3.52)

so that the auxilliary equations (3.49) become

4™Vt = —[2(m — £) + 1+ 21)]. (3.53)
In this limit the finite size corrections for the scaled energies are

1 meoshe [ 1 m?

—logD =— ——+E|, E=— I 3.54

5 log D1(x) ~ [48+} 2+Zz:€ (3.54)
with the partition function

Ising ~1/48 m2 [ AA5=2
Z71%g) =q Y q 20 (3.55)
m even q

4. Massess numerics

The TBA equations of the previous section can be solved numerically by an iterative
procedure. There are, however, some subtleties. The process starts with initial guesses for
the pseudoenergies(’¥) and 1-string locations, close to the UV or IR fixed points. The
flow is followed by progressively incrementing or decrementim§. At each value of
mR, the TBA equations are used to update the pseudoenesgigsand then these are
used in the auxiliary equations to update the locations of the 1-strings, and so on, until
a stable solution is reached. Typically, the UV form of the equations is stable for small
values ofmR, the IR form is stable for large values afR and there is an intermediate
range of values ofz R for which both forms are stable and converge (with a precision of
five decimals places) to the same values for the scaled energies and the locations of each
of the 1-strings. In all cases these numerical flows confirm the three mechanisms A, B, C.

One numerical difficulty is related to the determination of the location of the 1-strings
in strip 2. This problem arises because in the UV form of the equaﬁéﬂscannot be
obtained by direct iteration of the auxiliary equation. This problem is solved by inverting
the phases

Y - B2 i
logt ' 4. 4.1
og anI-( > + 4) (4.2)
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Fig. 3. Flow of groundstate energys = —12RE(R)/x vs. logm R) for periodic and(r, s) = (1, 1) boundary
conditions. The difference arises from the boundary term in the TBA equations. The energy is a decreasing
function ofm R for periodic boundary conditions by Zamolodchikow'sheorem but this theorem does not apply

with fixed boundary conditions.

A more serious problem relates to mechanism A cases for which two 1-strings collide to
form a (short) 2-string with complex coordinates

B, B2 BEiy. (4.2)

ma’

For these cases there is an intermediate range of valuesRofwhich requires a
modification of the TBA equations. Such short 2-strings were studied [23] in the context of
the Yang—Lee scaling theory. Unfortunately, due to instabilities in our equations, we have
been unable to numerically solve the mechanism A equations throughout the intermediate
region.

We present some typical numerical results in a series of figures. In Fig. 3, we compare
the groundstate scaling energy in thes) = (1, 1) sector with the scaling energy for
periodic boundary conditions. In Figs. 4 and 9 we show the flow of scaling energies in
the sectorgr, s) = (1, 1) and(r, s) = (3, 1), respectively. A dashed curve is used to guide
the eye in the intermediate regime of the mechanism A level. In Figs. 5 and 6, we show
the flow of the scaling energy and 1-strings for the mechanism A level in this sector
with string contente(m1, m2) = (4,2) and UV quantum numberg = (0, 0, 0, 0|0, 0).

The dashed curves in the intermediate regime are schematic and have not been calculated
from the solution of the TBA equations. For comparison, we show in Figs. 7 and 8, the
flow of the scaling energy and 1-strings for the mechanism B level with string contents
(m1, mp) = (6, 2) and quantum numberds= (0, 0, 0, 0, 0, 0|1, 1). The flow of the scaling
energies and 1-strings for arbitrary mechanism B and C levels can be calculated throughout
the flow by numerical solution of the TBA equations. The mechanism A levels can be
calculated right up to the point where the two 1-strings collide. Note the linear regimes in
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Fig. 4. Flow x 1 (@) = x3 1(9) of scaling energies-cefi/24= RE(R)/27 vs. logmR) in the (r,s) = (1, 1)
sector. The degeneracies of the levels are shown in the margins. The intermediate region of the mechanism A
levels (shown dashed) are schematic and have not been obtained from numerical solution of the TBA equations.

B i i i i
qo 8 & 4 2 0 2 4 6 8 10

Fig. 5. The scaling energy-ceff/24= RE(R)/2r vs. logmR) for the mechanism A level in the, s) = (1, 1)
sector with string content@nq, my) = (4, 2) and UV quantum numbers= (0, 0, 0, 0|0, 0).
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Fig. 6. Flow of six 1-strings vs. la@: R) for the mechanism A level in thé-,s) = (1, 1) sector with string
contents(mq, m2) = (4,2) and UV quantum numbers= (0, 0, 0, 0|0, 0).

34

s
30
28
22

PP EEQUENN NN, SR TR RSN N Y (TACE SR U

Fig. 7. The scaling energy-ceff/24= RE(R)/2r vs. logim R) for the mechanism B level in the, s) = (1, 1)
sector with string content§nq, m2) = (6, 2) and UV guantum numbers= (0, 0,0, 0, 0, 0|1, 1).

the UV and IR for the flows of 1-strings. This corresponds to the assumed limiting scaling
of the locations of these 1-strings.

5. Discussion

In this paper we have used a lattice approach to derive TBA equations for all excitations
in the massless renormalization group flow from the tricritical to critical Ising model.
The excitations are classified according to string content which changes by one of three
mechanisms A, B, C along the flow and leads to a mapping between finitized Virasoro
characters. With the exception of the intermediate regime for mechanism A flows, the
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Fig. 8. Flow of eight 1-strings versus logR) for the mechanism B level in the, s) = (1, 1) sector with string
contents(mq, mp) = (6, 2) and UV quantum numbers= (0,0, 0,0, 0, 0[1, 1).

Fig. 9. Flow x3 1 (q) > x3 3(9) of scaling energies-cefi/24= RE(R)/27 vs. logmR) in the (r,s) = (3, 1)
sector. The degeneracies of the levels are shown in the margins. The intermediate region of the mechanism A
levels (shown dashed) are schematic and have not been obtained from numerical solution of the TBA equations.
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TBA equations can be solved numerically by iteration. It would be of interest to compare
our results with the results of the Truncated Conformal Space Approximation.

Although, the tricritical Ising model is superconformal, the boundary conditions applied
in this paper break the superconformal symmetry. It would be of interest to investigate the
pattern of the superconformal flows between fixed points corresponding to superconformal
boundary conditions [9,24]. It would also be of interest to extend the analysis of this paper
to the complete flow for periodic boundary conditions.
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Appendix A

In this appendix we prove the generalizgd/andermonde identities of Section 2.4.
We simplify the identities to show they are special cases of general identities obtained by
Bender [25]. We then give an elementary proof of these identities using induction.
To simplify the identities of Section 2.4 we set = 2k or m; = 2k + 1 depending on
the parity ofim1 and seis = (N +m)/2 orn = (N +m = 1)/2 as appropriate. This reduces
the six identities to four identities

1/ [:1:| _ Zk:quZ_ka{ |:n2—kk] |:m f 2k]
o |:2nk_—k1:| [Vr]::;k]
+gn T [nz_kkjll] [mf;kl-i- 1} }
(oo [:1:| _ Xk:quZ—ka{ |:n2—kk] |:m f 2k]
g [n T l] |:m o 1}
g5 [znk—_kl] |:m - 72<k+ 1:| } (A.2)

n 2_2km—
x2.1: |: i|= Zq6k 2km—m+-6k+3/2

" k
% qk+l/2 n—k—1 k+1
2k+1 m—2k—1

(A1)
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—k—1/2 n—k—1 k
+a [ 2% :|[m—2k—1

+qm6"3/2[”2;"} [mka] } (A-3)

. n|_ 6k2—2km—m+6k+3/2
X1,2/x3,2: [m} = Xk:q
m—6k—3/2| n—k k
S Gl P |
—mtdk52|n—k—1 k
+4q [ 2 + 1 :||:m—2k—2

1 IR

After some recasting, a surprising mod 3 property emerges in the terms of these identities

. n_ 6k2—2km
X1,1/x31: [m}—ik:q
« n—k k
n—3k||3k—m
ol n—k k—1
+a |:n—3k+l:||:3k—1—m:|
m-7k+2| n—k+1 k-1
+a [n—3k+2]|:3k—2—m - (A9
. n_ 6k2—2km
X2.2: [m}—Zq
k
« n—k k
n—3k||3k—m
—msk+1| n—k—1 k
+a [n—3k—1}[3k+1—m}
m—sk+1| n—k k
+4q |:n—3k+l:||:3k—1—m:|}’ (A.6)
. n_ 6k2—2km
x2.1: [m}—ik:q
o | —mier2| n—k—1 k+1
g n—3k—2||3%k+2-m
—miskt1| n—k—1 k
+a [n—3k—1}[3k+1—m}

sl a7
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. n_ 6k?—2km
x1,2/ x32: [m} = Xk:q
« n—k k
n—3k ||3k—m
4 g 20+ n—k—-1 k
n—3k—-2||3k+2—-m

—misktl| n—k k
+a [n—3k—1}[3k+1—m}}' (A-8)

Setting? = 3k, 3k + 1, 3k + 2 mod 3 reduces the four identities to just two identities

X11/X3.1/ X1.2/ X3.2: [’H — Zq(Z—L€/3J)(Z—m) [n - Liﬂjel)/3j } [ 1£/3] } 7
12

L—m
(A.9)
22/ X1 [ n } = 3 gL Em
! ! m
¢
y [n ~ Lt +2)/3 ] [ (e +1)/3] } . (A10)
n—~¢ L—m
For (n, m) # (0, 0) there is an additional identity
n|_ (—1+2/3)—m) | B = L€+ /3] || L +2)/3]
[m]_zz:q |: n—2¢ L—m ' (A-11)
These are in fact special caded identities due to Bender [25].
A.l. Generalizeg-Vandermonde identities
n_ Z L2e+2—a)/3](t—m) | 1 — L€+ 1+a)/3] || L(&+a)/3]
m - 4 n—~¢ {—m ’
—-m<a<2n+1l (A.12)

Proof. Forn =m we have¢ =m so Lh.s. =r.h.s=1 for —m <a < 2m + 1. We now
proceed by induction om. Supposethatm <a <2n+land—(m—1) <a+1<2n+1,
thatis,—m < a < 2n. Then

n+1l|_ |n nemyl| no|_|n —O+(E—mt+D | N
|: m :|_[m]+q m—=1|"|m ta m—1

_ ZqL(2K+27a)/3j(K7m) [ﬂ —€+14+a)/3] ] [ L(€+a)/3] ]
4

n—~¢ L—m

2 We thank George Andrews for pointing this out to us.
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+ Zq<L<2E+1fa)/3J+1)(€fm+1)
¢

gt [n— L(€+2+a)/3l] [L<z+1+a>/3q

n—1{ L—m+1
=§:quﬂﬂvwbm%[”—L@+l+avm}
Z n—~4
+qm+u[n—Lw+1+avm}}[ue+aya}
=Y glerz-asem |:n+1— L(€+l+a)/3j:| |:L(€+a)/3j:|

Now suppose that = 2n + 1. Then only the termg =n and¢ = n + 1 survive on the
r.h.s. and

Z L@e+2-a)/3)t—m) |+ 1=+ 1+a)/3] || (£ +a)/3]
lq n+1—1¢ (—m
_ ZqL(ZZ—ZrH—l)/Sj(Z—m) [’l +1-[(€+2n+2)/3] ] [ [+ 2n+1)/3] }

- n+1-¢ L—m

Lol T2
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