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Reentrant melting of soliton lattice phase in a bilayer quantum Hall system
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At large parallel magnetic fieldBi , the ground state of the bilayer quantum Hall system forms a uniform
soliton lattice phase. The soliton lattice will melt due to the proliferation of unbound dislocations at certain
finite temperature leading to the Kosterlitz-Thouless~KT! melting. We calculate the KT phase boundary by
numerically solving the newly developed set of Bethe ansatz equations, which fully take into account the
thermal fluctuations of soliton walls. We predict that within certain ranges ofBi , the soliton lattice will melt
at TKT . Interestingly enough, as temperature decreases, it melts at certain temperature lower thanTKT exhib-
iting the reentrant behavior of the soliton liquid phase.
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When the interlayer spacingd is comparable to the mea
particle distance, the bilayer quantum Hall system at to
filling factor n tot51 can exhibit the quantum Hall effect du
to the strong interlayer correlations.1–3 In the presence o
large parallel magnetic fieldBi , the ground state of the sys
tem is known to form a uniform soliton lattice~SL! phase
made of the periodic array of the phase solitons of the fi
variableu(r ), which represents the relative phase differen
between electrons in two layers.3 Using the isospin
language,3 the effective energy functional for the bilayer sy
tem can be written by

E~u!5E d2r H 1

2
rsu“uu22

t

2p l 2
cos@u~r !1Qx#J , ~1!

wherers is the isospin stiffness,t5t0e2Q2l 2/4 the interlayer
tunneling amplitude,l 5(\c/ueuB')1/2, andQ52p/L i with
L i5F0 /Bid, which defines the length associated with o
flux quantumF0 enclosed between two layers. We set t
magnetic lengthl 51. This continuum model is valid, whe
the field u(r ) varies smoothly over the lengthsl ,L i .4 With
the increase ofBi , the system exhibits a quantum pha
transition from commensurate~C! to incommensurate~I!
phase atQc5(2/p)(2t/prs)

1/2 at T50.3,5 The incommen-
surate phase atQ.Qc describes the uniform SL phase
zero temperature.

In the paper, we study the thermodynamics of the
phase through a mapping of the 2D statistical mechan
model in Eq. ~1! to the 1D quantum sine-Gordon~QSG!
Hamiltonian. When one neglects the compactness of the
variableu, which will be reasonably valid forT,(p/2)rs ,
the 1D QSG model is exactly soluble by the Bethe ans
method. The Bethe ansatz solution provides the thermo
namic CI phase boundaryQc(T). Depending on the value
of C5t/(32prs), the critical valueQc(T) will increase~de-
crease! with temperature forC.1(C,1). Within the in-
commensurate phase, the ground state of the system i
uniform SL phase atT50. AsT increases to about (p/2)rs ,
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the compactness of the angle variableu will become impor-
tant, which introduces dislocations to the system leading
the KT melting of the SL phase. Recently Hannaet al. have
studied the melting of the SL phase by analyzing the ela
moduli based on the rigidity of the zero temperature grou
state.6,7 However, the renormalizaion of the elastic modu
due to thermal fluctuations of soliton walls has not be
taken into account. Furthermore, as one approaches to th
phase boundary, the soliton density will vanish. In order
understand the melting of the SL phase near the CI ph
boundary, it is crucial to include the thermal fluctuations a
the soliton density variations as well.

In the paper, we develop a set of Bethe ansatz equati
which fully take into account both the thermal fluctuations
the soliton walls and the density variations. By numerica
solving the Bethe ansatz equations, we have calculated
the compression moduluskxx and the shear moduluskyy of
the SL phase. By making an asymptotic expansion near
CI phase boundary, we have shown thatkxx goes as
(2t/M )1/2@Q2Qc(T)#1/2rs and kyy>(8Mt3)1/2@Q
2Qc(T)#21/2rs , whereM is the soliton mass which varie
with t and t5T/(8prs). This asymptotic behavior explic
itly confirms the predictions made by Coppersmithet al.7

Based on the elastic moduli thus obtained,TKT is calculated
and compared with the zero-temperature estimates.6,8 We
predict the following reentrant behavior of the soliton liqu
phase. At certain values ofQ slightly belowQc(0), thesys-
tem initially stays at the C phase. AsT increases, it makes a
transition to the soliton liquid phase. With the further i
crease ofT, the soliton liquid solidifies to the SL phase du
to the rapid increase of the soliton density, which sub
quently melts reentering the soliton liquid phase.

Following the effective energy functional of Eq.~1!, the
low-temperature thermodynamics of the system can be
fined by the statistical partition function Z
5*@Du#e2E(u)/T. One can map the statistical ensemb
summation into quantum transfer matrix by identifyingZ
5 limR→` Tr@e2RĤ#,
©2002 The American Physical Society18-1
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Ĥ5E dxF T

2rs
P21

rs

2T
~]xu!22

t

2pT
cos~u1Qx!G .

~2!

If one neglects the compactness of the angle variableu(r ),
the canonical conjugate momentumP(r ) can be easily inte-
grated out leading to the corresponding classical parti
function. We make the following change of variablesf(r )
5Ars /T@u(r )1Qx#, which leads to the quantum Hami
tonian of the 1D sine-Gordon model with external U~1! cou-
pling

Ĥ5E dxF1

2
P21

1

2
~]xf!22A

b

2p
]xf12m cos~bf!

1
1

2T
rsQ

2G . ~3!

Herem5t/(4pT), b5AT/rs, andA52pQrs /T. The com-
pactness ofu(r ) would restrictP(r ) to the integer values
Hence the ground state energyE of the 1D QSG model cor-
responds toF/T, whereF is the free energy of the 2D sta
tistical mechanical system.

The ground state of the 1D QSG model is exactly solu
by the Bethe ansatz method. There is a competition betw
the finite soliton massM which prefers the commensura
phase and the external fieldA coupled to the topologica
charge which favors the incommensurate phase. This
‘‘quantum’’ version of the CI transition,9 where the soliton
mass includes full ‘‘quantum’’ fluctuation effects. With exte
nal U~1! field, a soliton can be created with energy costDE
5M coshQ2A. The soliton massM is given by

M5

2GS p

2D
ApGS p11

2 D F pm

GS 1

p11D
GS p

p11D G
1/2(p11)

, ~4!

wherep5T/(8prs2T) andQ represents the rapidity of th
soliton.10

For A,M , the ground state will be the vacuum: the com
mensurate phase. However, forA.M , a nontrivial vacuum
will arise, since the energy cost to create a soliton can
negative. In this case, the ground state will be described
the soliton condensations: The SL phase. The CI transi
will occur atA5M . By equating the two quantities, one ca
obtain the exact CI phase boundaryQc(T)

Qc~T!5
8

Ap

tGS t

2~12t!
D

GS 1

2~12t!
D FC

G~12t!

G~11t!
G1/2(12t)

, ~5!

where we have neglected theQ dependence oft, since the
continuum model is only valid forQ<1. The parameterC is
given by t/(4T0). The reduced temperature variablet is
between 0 and 1. Ast→0, one can reproduce the classic
limit Qc(0)516AC/p.
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Now we want to study the melting of the SL phase
numerically solving the Bethe ansatz equations. Using
fact that the exact scattering matrix is known for the 1D QS
model, one can calculate the ground state energy and
soliton densityn̄s(Q,T) as a function ofQ and T.10 The
Bethe ansatz equation is given by

2pr~Q!5M coshQ1E
2B

B

dQ8w~Q2Q8!r~Q8!, ~6!

where r(Q) is the density of solitons betweenQ and Q
1dQ per unit length and the integral kernelw(Q) is given
by

w~Q!5E
2`

`

dveivQ

sinhS p~p21!v

2 D
2 coshS pv

2 D sinhS ppv

2 D . ~7!

In terms of the density function, one can calculate the grou
state energy as follows:

DE5E
2B

B

dQ~M coshQ2A!r~Q!, ~8!

where the ground state is determined by imposing the c
dition ]DE/]B50. By making an asymptotic expansion o
Eq. ~6! near the CI phase boundary, one can confirm that
soliton density exhibits the power-law behaviorn̄s
>(2M /t)1/2@Q2Qc(T)#1/2/(2p).5

As T increases to about (p/2)rs , the compactness of th
variableu(r ) becomes important, which introduces topolog
cal defects~dislocations! into the system leading to the KT
melting of the SL phase at temperatures much below the
transition temperature. Although the 1D QSG Hamiltoni
does not involve dislocation excitations, one can get a r
sonable estimate forTKT by analyzing the elastic moduli o
the SL at finite temperature. The elastic modulik i j are de-
fined as follows:6

k i j 5
]2

]Qs
i ]Qs

jF, ~9!

whereQs
x is given by 2p/Ls , whereLs is the lattice constan

of the SL phase along thex̂ direction,Qs
y5tanfQs

x with f
the tilt angle of the soliton walls, andi , j 5x,y. In order to
obtain the elastic moduli of the system, one needs to ca
late the energy of the system by varying the soliton den
from the ground state value and/or tilting the solitons fro
the vertical orientations. We first calculate the compress
moduluskxx . By shifting the Fermi momentum fromB to
B1e, one can increase~decrease! the soliton density for
positive~negative! values ofe. The soliton densityr(Q) is a
function of bothe andQ. For smalle, one can expand the
soliton density up to quadratic order ine

r~Q!> r̄~Q!1erb8~Q!1
e2

2
rb9~Q!, ~10!
8-2
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wherer̄(Q) is the soliton density profile of the ground stat
rb85]r/]eue50, and rb95]2r/]e2ue50. At the lowest order
of e, we obtain the usual Bethe ansatz equation for
ground state as shown in Eq.~6! with the condition
]DE/]e50. Up to the order ofe2, we obtain the following
two equations:

2prb8~Q!5@w~Q2B!1w~Q1B!#r̄~B!

1E
2B

B

dQ8w~Q2Q8!rb8~Q8!, ~11!

2prb9~Q!5
]

]Q
@w~Q1B!2w~Q2B!#r̄~B!1@w~Q2B!

1w~Q1B!#F ]r̄~B!

]B
12rb8~B!G

1E
2B

B

dQ8w~Q2Q8!rb9~Q8!. ~12!

The energy of the system is given as follows:DE5D Ē
1(e2/2)xb , whereD Ē is the ground state energy andxb is
given by

xb52M sinhBr̄~B!12~M coshB2A!F ]r̄~B!

]B
12rb8~B!G

1E
2B

B

dQ~M coshQ2A!rb9~Q!. ~13!

The Qs
x can be calculated as follows: Qs

x

52p*2B2e
B1e dQr(Q)>Q̄s

x1abe1O(e2), where Q̄s
x

52p*2B
B dQr̄(Q) is the ground state value andab

54pr̄(B)12p*2B
B dQrb8(Q). The compression modulu

kxx is given as follows:]2F/]Qs
x25Txb /ab

2 .
Now we calculate the shear moduluskyy . To obtain the

shear modulus, one needs to fixQs
x and varyQs

y alone. Glo-
bal shift of the rapidity will not only tilt the soliton walls bu
also change the soliton density along thex̂ direction. In order
to vary Qs

y alone, one needs to change the fermi moment
B to B1e and rapidity byh simultaneously along the fol
lowing trajectory:e52aTh2 for some constantaT .11 By
making a perturbative expansion inh, we obtain the follow-
ing two Bethe ansatz equations up toh2:

2prs8~Q!5@w~Q2B!2w~Q1B!#r̄~B!

1E
2B

B

dQ8w~Q2Q8!rs8~Q8!, ~14!
15331
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2prs9~Q!5
]

]Q
@w~Q1B!2w~Q2B!#r̄~B!1@w~Q2B!

1w~Q1B!#F ]r̄~B!

]B
12rs8~B!G

1E
2B

B

dQ8w~Q2Q8!rs9~Q8!, ~15!

where one can easily notice thatrs8(Q) is an odd function of
Q and rs9(Q) an even function. The energy of the syste
along the trajectory is given by

DE5D Ē1
h2

2
xs , ~16!

wherexs is given by

xs52M sinhBr̄~B!12~M coshB2A!F ]r̄~B!

]B
12rs8~B!G

1E
2B

B

dQ~M coshQ2A!rs9~Q!. ~17!

SinceQs
y5tanfQ̄s

x5hQ̄s
x , the shear moduluskyy is given

by the following relation:]2F/]Qs
y25Txs /(Q̄s

x)2. The off-
diagonal elements ofk i j are zero. Using the asymptotic ex
pansion, one can show that near the CI phase boundarykxx
goes as (2t/M )1/2@Q2Qc(T)#1/2rs , and kyy
>(8Mt3)1/2@Q2Qc(T)#21/2rs .11

In the experiment of Murphyet al., for equally populated
layers, the experimental values of the various parameters
given as follows:rs>0.35 K, t0>1.2 K, l >126 Å, andd
>200 Å.1 For the above sample, the parameterC can be
estimated to be about 0.033. In the inset of Fig. 1, the o
circles representkxx and the open squareskyy at fixed value
of Q>0.919, which obey the correct asymptotic behav
near the CI phase boundary. We have confirmed that bothkxx
andkyy approach tors at largeQ.11 It has been argued that a
large Q, there can be an additional transition to canted
commensurate phase withmzÞ0.12,13 The KT transition
temperatureTKT can be estimated by solving the followin
equation:kBT/(p/2)rs5@kxx(T)kyy(T)#1/2/rs .8 In Fig. 1,
the closed circles represent@kxx(T)kyy(T)#1/2/(16rs) as a
function oft. The intersections with the solid line with slop
1 locate the positions ofTKT .14 It can be shown that for
Qmin,Q,Qc(0), the equations have two solutions, whe
Qmin>0.9,Qc(0)>0.927. In Fig. 2, we plot the KT melting
temperature as a function ofQ. The closed circles represen
the KT phase boundary from our Bethe ansatz calculat
the open squares from Hannaet al. based on the zero tem
perature value of the elastic moduli, and the solid curve
CI phase boundary. ForQmin,Q,Qc(0), the system ini-
tially stays at the C phase. AsT increases, it makes a trans
tion to the soliton liquid phase. With the further increase
T, the soliton liquid becomes the SL phase due to the ra
increase of the soliton density upon entering the CI ph
boundary. Subsequently it melts exhibiting the reentrant
havior of the soliton liquid phase. We have confirmed tha
8-3
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large Q, TKT approaches (p/2)rs .11 Read argues that atT
50, quantum fluctuations are not important, since the
main ‘‘sheets’’ are marginally rough.8,15 However at finiteT,
thermal length scalejb5(\v/kBT) becomes finite. Hence
near the CI phase boundary and/or KT phase boundary
large distance thermal fluctuations will be still important.

To summarize, we have studied the melting of the
phase by numerically solving the newly developed set
Bethe ansatz equations, which fully take into account b
the thermal fluctuations of the soliton walls and the dens
variations. Based on the elastic moduli thus obtained,TKT is
calculated. We predict that the system will exhibit the ree
trant behavior of the soliton liquid phase within certa
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