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Reentrant melting of soliton lattice phase in a bilayer quantum Hall system
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At large parallel magnetic fiel@, the ground state of the bilayer quantum Hall system forms a uniform
soliton lattice phase. The soliton lattice will melt due to the proliferation of unbound dislocations at certain
finite temperature leading to the Kosterlitz-Thoul€¢k3') melting. We calculate the KT phase boundary by
numerically solving the newly developed set of Bethe ansatz equations, which fully take into account the
thermal fluctuations of soliton walls. We predict that within certain rangeB ofthe soliton lattice will melt
at Tyt . Interestingly enough, as temperature decreases, it melts at certain temperature lowey; teximib-
iting the reentrant behavior of the soliton liquid phase.
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When the interlayer spacimdjis comparable to the mean the compactness of the angle variablavill become impor-
particle distance, the bilayer quantum Hall system at totatant, which introduces dislocations to the system leading to
filling factor »i=1 can exhibit the quantum Hall effect due the KT melting of the SL phase. Recently Haretaal. have
to the strong interlayer correlations? In the presence of studied the melting of the SL phase by analyzing the elastic
large parallel magnetic fielB, the ground state of the sys- moduli based on the rigidity of the zero temperature ground
tem is known to form a uniform soliton lattic€SL) phase  state®” However, the renormalizaion of the elastic moduli
made of the periodic array of the phase solitons of the fieldjye to thermal fluctuations of soliton walls has not been
variable6(r), which represents the relative phase differencegagen into account. Furthermore, as one approaches to the Cl
between electrons in two Iaye?r_s.Usmg the isospin  phase boundary, the soliton density will vanish. In order to
languag€ the effecnve energy functional for the bilayer sys- |, qarstand the melting of the SL phase near the CI phase
tem can be written by boundary, it is crucial to include the thermal fluctuations and

the soliton density variations as well.
t In the paper, we develop a set of Bethe ansatz equations,
27T|2COS{ o+, (W) which fully take into account both the thermal fluctuations of
the soliton walls and the density variations. By numerically
wherepy is the isospin stiﬁnesst,=toe‘Q2'2’4 the interlayer solving the Bethe ansatz equations, we have calculated both

tunneling amplitudel = (%ic/|e|B, ) Y2 andQ=2/L; with the compression modu_lus,(X and the sh_ear modul_usyy of
Lj=®,/Byd, which defines the length associated with onethe SL phase. By making an asymptotic expansion near the
flux quantum®, enclosed between two layers. We set theCl phase boundary, we have shown that, goes as
magnetic length=1. This continuum model is valid, when (ZT/M)M[Q—QC(T)]HZPS_ and  ky,=(8M 7_3)1/2[Q.

the field 6(r) varies smoothly over the lengthsl;.* With ~ —Qc(T)]™**ps, whereM is the soliton mass which varies
the increase oB), the system exhibits a quantum phaseWith 7 and 7= T/(8p). This asymptotic behavior explic-
transition from commensuratéC) to incommensuratgl)  itly confirms the predictions made by Coppersméhal.
phase aQ.=(2/m)(2t/mps)Y? at T=0.2° The incommen- Based on the elastic moduli thus obtain&gy is calculated

surate phase aD>Q, describes the uniform SL phase at and compared with the zero-temperature estinfates/e
zero temperature. predict the following reentrant behavior of the soliton liquid
In the paper, we study the thermodynamics of the SLphase. At certain values @ slightly belowQ(0), thesys-
phase through a mapping of the 2D statistical mechanicdem initially stays at the C phase. Asincreases, it makes a
model in Eq.(1) to the 1D quantum sine-Gordof@SG transition to the soliton liquid phase. With the further in-
Hamiltonian. When one neglects the compactness of the fielerease ofT, the soliton liquid solidifies to the SL phase due
variable #, which will be reasonably valid fof < (=/2)ps, to the rapid increase of the soliton density, which subse-
the 1D QSG model is exactly soluble by the Bethe ansatfiuently melts reentering the soliton liquid phase.
method. The Bethe ansatz solution provides the thermody- Following the effective energy functional of E€l), the
namic Cl phase bounda®.(T). Depending on the values low-temperature thermodynamics of the system can be de-
of C=1/(32mps), the critical valueQ.(T) will increase(de- fined by the statistical partition function 2

1
E(e)zfdzr EpS|V0|2—

creasg with temperature forC>1(C<1). Within the in- =J[D6#le"5?'T. One can map the statistical ensemble
commensurate phase, the ground state of the system is tR#mmation into quantum transfer matrix by identifyig
uniform SL phase aT=0. As T increases to about{/2)ps,  =limg_.. Tr[e R"],
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If one neglects the compactness of the angle variabie,
the canonical conjugate momentdir{r) can be easily inte-

T n2s P55 02—~ cog 0+ 0x)
2ps 2T 7% 27T '
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Now we want to study the melting of the SL phase by
numerically solving the Bethe ansatz equations. Using the
fact that the exact scattering matrix is known for the 1D QSG
model, one can calculate the ground state energy and the

soliton densityny(Q,T) as a function ofQ and T.X° The
Bethe ansatz equation is given by

grated out leading to the corresponding classical partition

function. We make the following change of variabléér)
=\ps/T[O(r)+Qx], which leads to the quantum Hamil-
tonian of the 1D sine-Gordon model with externgllJcou-

pling
H= j dx

1 2
+ EPSQ

1HZ+E Z—Aﬁ +2
5 5 (IxP)" = A5—dxp+2u cod )

: )

Hereu=t/(4=wT), B=\T/ps, andA=27Qp,/T. The com-
pactness of(r) would restrictII(r) to the integer values.
Hence the ground state ener§yf the 1D QSG model cor-
responds taF/ T, whereF is the free energy of the 2D sta-
tistical mechanical system.

The ground state of the 1D QSG model is exactly soluble
by the Bethe ansatz method. There is a competition between

the finite soliton masdM which prefers the commensurate
phase and the external field coupled to the topological
charge which favors the incommensurate phase. This is
“quantum” version of the ClI transitiod,where the soliton
mass includes full “quantum” fluctuation effects. With exter-
nal U(1) field, a soliton can be created with energy cast
=M cosh®—A. The soliton mas#/ is given by

D 1 12(p+1)
2I'\ 5 —
(2 p+1

M= o+ 1) | "* T . @
\/;F 2 p+1

wherep=T/(8mps—T) and® represents the rapidity of the
soliton?

For A<M, the ground state will be the vacuum: the com-
mensurate phase. However, far-M, a nontrivial vacuum

will arise, since the energy cost to create a soliton can be

27p(®)=M cosh® + f_BBd(’B'gD(G—@’)p(@'), (6)

where p(®) is the density of solitons betwee® and ©
+dO per unit length and the integral kerng(®) is given
m(p—1lw

by
smf( 5 )
7w\ | [7Tpw)’
2005?67)smr<

2
In terms of the density function, one can calculate the ground
state energy as follows:

©(0)= J:dwe“”@ @)

A&= JB dO(M cosh® —A)p(0), 8
-B

where the ground state is determined by imposing the con-
dition 9A&/9B=0. By making an asymptotic expansion of
Eq. (6) near the Cl phase boundary, one can confirm that the

soliton density exhibits the power-law behaviong
=(2M/71)*Q-Q.(T)1¥¥(2m).°

As T increases to abouti(/2)ps, the compactness of the
variabled(r) becomes important, which introduces topologi-
cal defectg(dislocation$ into the system leading to the KT
melting of the SL phase at temperatures much below the ClI
transition temperature. Although the 1D QSG Hamiltonian
does not involve dislocation excitations, one can get a rea-
sonable estimate foFct by analyzing the elastic moduli of
the SL at finite temperature. The elastic moduli are de-
fined as follows

02

“iaal” ?

Kij

negative. In this case, the ground state will be described by “o ) )
the soliton condensations: The SL phase. The Cl transitio¥/hereQs is given by 2r/L s, wherel is the lattice constant

will occur atA=M. By equating the two quantities, one can
obtain the exact ClI phase bounda&®y(T)

) { F(1-7)

C
) T'(1+7)

T

TF(—
8 2(1—17)
1

2(1—1)

1/2(1-7)

)

GF(

QM=

where we have neglected tlig¢ dependence df, since the
continuum model is only valid fo=<1. The parameteC is
given by t/(4Ty). The reduced temperature variabteis
between 0 and 1. As—0, one can reproduce the classical

limit Q(0)=16\C/ .

of the SL phase along the direction, QY=tan$Q with ¢

the tilt angle of the soliton walls, andj=x,y. In order to
obtain the elastic moduli of the system, one needs to calcu-
late the energy of the system by varying the soliton density
from the ground state value and/or tilting the solitons from
the vertical orientations. We first calculate the compression
modulus «,, . By shifting the Fermi momentum frorB to

B+ ¢, one can increaséecreasethe soliton density for
positive(negative values ofe. The soliton density(®) is a
function of bothe and®. For smalle, one can expand the
soliton density up to quadratic order &

2

p(©)=p(0)+epy(©)+ 5 p}(©), (10
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where;((a) is the soliton density profile of the ground state,
pp=0pld€| o, and pp=3%pld€?|.—o. At the lowest order
of €, we obtain the usual Bethe ansatz equation for the

a _
2mpg(0)= -5 [e(0+B)—¢(0—-B)]p(B) +[¢(O—B)

ground state as shown in Ed6) with the condition a;(B) ,
dAElde=0. Up to the order ok?, we obtain the following +e(0+B)]| — 5= +2ps(B)
two equations:
B
+f_Bd®’qD(®—®’)p;’(®’), (15

{(0)=[¢(®—B)+¢(0+B)]p(
2mpp(0)=[¢(0=B)+ (O +B)]p(B) where one can easily notice that(®) is an odd function of

B ) o ® and pZ(®) an even function. The energy of the system
+ _Bd® P(0-0")py(07), (19 along the trajectory is given by

AE=AE+ 7 X, (16)

1% _
27Tpg(®)= E[QD((’@‘FB)—QD(®—B)]p(B)+[QD(®—B) Where)(S s given by

_ — dp(B)
+¢(0+B)] %-FZ;J{)(B)} Xs=2M sinhBp(B)+2(M coshB— A) p;B +2pé(B)}
B B
+f dO'¢(®—0")py(0"). (12) +f Bd@(M cosh® —A)p2(0). (17
7B —

Since Q¥=tan$Q%=7Q, the shear modulus,, is given
The energy of the system is given as followsg=A& by the following relation:az}"/an’2=_TXS/(Q§)2. The off-
+(€%2)y,, whereA€ is the ground state energy ang is dlagqnal elements of;; are zero. Using the asymptotic ex-
given by pansion, one can show that near the Cl phase boundary,
goes as (2/IM)YQ-Q.(T)]"%s, and  ky
=(8M )" Q—Qu(T)] %ps. ™
In the experiment of Murpht al., for equally populated
+ Zp{)(B)} Igyers, the experimental values of the various parameters are
given as follows:ps=0.35 K, t,=1.2 K, =126 A, andd
B =200 A! For the above sample, the parameran be
+j dO(M cosh® — A)pl(0). (13 estimated to be about 0.033. In the inset of Fig. 1, the open
-B circles represenk,, and the open squares,, at fixed value
of Q=0.919, which obey the correct asymptotic behavior
M .« hearthe Cl phase boundary. We have confirmed that lgth
The B?Se can be_X calculated2 as follows: gi and«,, approach tg, at largeQ.** It has been argued that at
=2m[ g dOp(@)=Qc+ ape+O(e’),  where Qg  JargeQ, there can be an additional transition to canted in-
=27[B5d0p(®) is the ground state value and, commensurate phase witm,#0.>*3 The KT transition

=47T;(B)+27Tf§3d®lﬂé(®)- The compression modulus temperaturel, can be estimated by sl?zlving8 the f(_)llowing

Kyy IS given as follows#2F1 9QX2=Txy/ af. equation:KgT/(7/2)ps=[ kx(T) ky(T)] /Pﬁz- In Fig. 1,
Now we calculate the shear modulkg,. To obtain the the closed circles represefik,(T) «y,(T)] "/(16ps) as a

shear modulus, one needs to @ and varyQ! alone. Glo- function of 7. The intersections with the solid line with slope

i 14
bal shift of the rapidity will not only tilt the soliton walls but 1 locate the positions OTK_T' It can be ShOW_” that for
| h h liton density al theirection. In ord Qmin<Q<Q.(0), theequations have two solutions, where
also change the soliton density along theirection. Inorder 5 "5 95 (0Y=0.927. In Fig. 2, we plot the KT melting

to vary Qg alone, one needs to change the fermi momentumem e ratyre as a function @ The closed circles represent

B to B+ € and rapidity by772 simultaneously along tlf11e fol- the KT phase boundary from our Bethe ansatz calculation,
lowing trajectory: e= —ay7” for some constantr.™ BY  the open squares from Haneaal. based on the zero tem-

making a perturbative expansion i) we obtain the follow-  perature value of the elastic moduli, and the solid curve the

ing two Bethe ansatz equations up6: Cl phase boundary. FO®,,y<<Q<Q.(0), the system ini-

tially stays at the C phase. Asincreases, it makes a transi-

o tion to the soliton liquid phase. With the further increase of

27pi(0)=[¢(®—B)—¢(®+B)]p(B) T, the soliton liquid becomes the SL phase due to the rapid

5 increase of the soliton density upon entering the Cl phase

+f 40’ ¢(0—0")pL(0"), (14) bou_ndary. Subsgque_ntly_ it melts exhibiting the reentrant be-

-B havior of the soliton liquid phase. We have confirmed that at

dp(B)
9B

Xb=2M sinhBp(B)+2(M coshB—A)
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FIG. 2. The KT melting temperature as a function@fThe KT
T phase boundary is shown and compared with the result of Hanna
et al. (Ref. 6, where r;=167. The closed circles are from our
FIG. 1. Determination of the KT melting temperature. The Bethe ansatz result and the open squares from Hahi& The

closed circles represefit(T) k,(T)]*%(16ps) as a function of  sojid line represents the Cl phase boundary.
7. The intersections with the solid line with slope 1 locate the

positions of Tt . In the inset, the open circles represent the com-
pression modulu,, as a function ofr at fixedQ=0.919 and the
open squares the shear modukys .

ranges ofQ. Our proposed KT phase boundary can be ex-
perimentally observed by measuring the longitudinal resis-
tance of the high purity bilayer sample. Towards tf}g comple-
11 tion of the paper, we became aware that Papal.™ also
large Q, Ty approaches £/2)p,.~ Read argues that at = o e the bilayer quantum Hall system based on the exact

=O., 9uanturr3 fluctua'uqns are notl|5mportant, since the do'solution of the 1D sine-Gordon model. They studied the tem-
main “sheets” are marginally rough!® However at finiteT,

thermal length scale,— (fv/ksT) becomes finite. Hence perature dependence of the specific heat and the magnetiza-

near the Cl phase boundary and/ior KT phase boundary, ﬂ{éon. In our paper, we mainly focus on the elastic moduli, the

large distance thermal fluctuations will be still important. eémperature-renormalized value of the KT temperature, and

To summarize, we have studied the melting of the SLthe reentrant behavior of the soliton liquid.
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