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ABSTRACT: It is well understood that 2d conformal field theory (CFT) deformed by an
irrelevant 7T perturbation of dimension 4 has universal properties. In particular, for the
most interesting cases, the theory develops a singularity in the ultra-violet (UV), signifying
a shortest possible distance, with a Hagedorn transition in applications to string theory.
We show that by adding an infinite number of higher [TT],~ irrelevant operators of posi-
tive integer scaling dimension 2(s+1) with tuned couplings, this singularity can be resolved
and the theory becomes UV complete with a Virasoro central charge cyy > cig consistent
with the c-theorem. We propose an approach to classifying the possible UV completions
of a given CFT perturbed by [TT]s that are integrable. The main tool utilized is the ther-
modynamic Bethe ansatz. We study this classification for theories with scalar (diagonal)
factorizable S-matrices. For the Ising model with cig = % we find 3 UV completions based
on a single massless Majorana fermion description with cyy = 1—70 and %, which both have
N =1 SUSY and were previously known, and we argue that these are the only solutions
to our classification problem based on this spectrum of particles. We find 3 additional
ones with a spectrum of 8 massless particles related to the Lie group Eg appropriate to a
magnetic perturbation with cyy = %, % and % We argue that it is likely there are more
cases for this Fg spectrum. We also study simpler cases based on su(3) and su(4) where
we can propose complete classifications. For su(3) the infrared (IR) theory is the 3-state
Potts model with ¢cig = % and we find 3 completions with % < cyy < %. For the su(4)
case, which has 3 particles and cig = 1, and we find 11 UV completions with 1 < cyy < 5,

most of which were previously unknown.
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1 Introduction

Suppose we are given a 2d conformal field theory (CFT), referred to as cftig, with Virasoro
central charge ¢ = ¢ir, and we then consider irrelevant perturbations of this CFT:

S = Scftm + ZO@/dQ.% 02(.%'), (1.1)

i>1

where O; are irrelevant operators of scaling dimension I'; > 2 in units of mass. Since the
perturbing operators are irrelevant, the CET describes the infrared (IR) fixed point of the
above model, hence the label cftig. Here I'; = 2A; where A; is the standard left/right
conformal dimension. The couplings «; have dimension 2 —I';. We assume there is a single
overall mass scale M, such that a; oc M2?~1%. There always exists an infinite number of
possible irrelevant operators O; in part because we can always differentiate lower dimension
operators. The standard and essentially correct thinking is that starting with only a few
non-zero «;, perturbation theory generates an infinite number of additional couplings ay,
the ultraviolet (UV) limit does not exist, and predictability is lost. This article explores



a fundamental question: can one tune the couplings «; such that the UV limit exists?
This general problem is fundamental to attempts to theorize beyond the Standard Model
physics, since the central issue is to find a complete and finite UV theory, perhaps with
quantum gravity, that leads to the low energy Standard Model under renormalization group
(RG) flow. In quantum gravity, ultraviolet completeness is often referred to as “asymptotic
safety” [1, 2]. There are many interesting issues in connection with these questions. For
instance, the c-theorem [3] indicates that RG flow to lower energies is “irreversible” in
the sense that some UV degrees of freedom are lost in the flow. This leads to the basic
question: “Can we reconstruct the UV theory from our limited data on the low energy
infrared theory by somehow reversing the RG flow?”. In general the answer is obviously
no, thus examples where it is possible, due perhaps to symmetries like supersymmetry, are
intrinsically interesting. This is the problem studied in this paper in a specialized context.
Theories of the kind studied here without a UV completion are in a sense analogous to the
so-called “Swampland” [4].

The above question is very broadly stated, and in this paper we will limit its scope by
imposing some significant additional structure. First we limit ourselves to integrable theo-
ries in 2 spacetime dimensions. As we will see, this restriction still leads to a rich structure
that has not been fully explored. There are in general an infinite number of low dimension
irrelevant operators O; to consider depending on the choice of cftig. However every CFT
has a stress-energy tensor with the conventionally normalized left /right components 7T'(z)
and T'(%), each of dimension 2 in units of energy. We thus restrict the class of models such
that the lowest dimension irrelevant operator is O; = TT /72, and define o = a7 of mass
(energy) dimension —2. We thus define the dimensionless coupling g = —aM?. The higher
dimensional operators {O;~1} will be denoted [TT]s~1 with dimension 2(s + 1) where s
is an odd integer, which will be based on the possible integrable perturbations of cftig as
described in [5]. More specifically, s + 1 will be associated to the integer “spin” of a local
conserved quantity where T',T in [TT]s have spin s+ 1 and —(s+ 1)) respectively; this will
be reviewed in the next section.

As already stated, for s = 1, [T'T]; = TT/n? is associated to the generic energy-
momentum conservation. If all other ag~1 = 0, then it is known that the ground state
energy on a circle of circumference R has a universal form [5, 6], which we now review. An
important probe of any theory is the ground state energy F(R) on an infinite cylinder of
circumference R, which was studied in [5-7]. In thermodynamic language the free energy
density is F(T') = E(R)/R, where R = 1/T is the inverse temperature. It is standard to
express this quantity in terms of a scaling function ¢(MR)

7 ¢(MR)

B(R) = -2 == (1.2)

where M can be identified with a physical energy scale, such as the mass of a particle,
or the energy scale of massless particles. The UV limit is r = M R — 0, whereas the IR
corresponds to 7 — co. For a conformal theory, ¢(MR) is scale invariant, i.e. independent
of MR, and for unitary theories is equal to the Virasoro central charge. For non-unitary
theories it is shifted ¢ — ¢ — 12dy where dy is the lowest scaling dimension of fields. The



quantity ¢(M R) can be used to track the RG flow. It has been shown that

20IR h=_9 (1.3)

/ ) 2
1 + — %CIR (MR)

where cir is a constant —oo < ¢ig < oo identified as the IR central charge as MR — oo.

¢(MR) =

This result was obtained in [5, 6] based on the inviscid Burgers equation
0o E + EOrE = 0. (1.4)

Indeed, one finds that (1.3) satisfies the above differential equation if one identifies

h:—%, — g=-aM’ (1.5)

For a < 0 and cig > 0, one sees that the ground state energy develops a square-root
singularity in the UV when R? < 2m|a|/3, indicating a smallest possible distance. It is
evident that this singularity only exists for negative « if ¢ig > 0, and this is consistent with
the c-theorem, i.e. ¢(MR) increases toward the UV until the singularity is reached [21].

Depending on the context, the singularity in the UV may or may not be desirable. In
the string context, the shortest possible distance is related to the string scale and thus a
kind of Hagedorn transition, and there is no conceptual reason to try to add additional
irrelevant operators [8-13]. On the other hand, in traditional QFT, the singularity signifies
the usual pathology with irrelevant perturbations. In this paper we take the latter point
of view, and try to cure the singularity.

To be more specific and summarize the models studied here, we consider a 2d CFT
formally defined by the action:

So = Scttyy + Z Qs /d2x [TT)s (1.6)

s>1

where the irrelevant operators [T7']; depend on the cftig and are defined in [5], as reviewed
in the next section. These generalized TT deformations have been considered recently
in a somewhat different context [22-25]; the main distinction from our work is that here
the focus is on massless flows between CFT’s which was not studied in these works. The
problem we pose and study is to classify the possible tuned a; that have UV completions,
i.e. theories that are non-singular in the UV. This means that in the UV the theories are
relevant perturbations of a different CF'T we denote as cftyy with central charge cyy:

Suv ~ Setryy + N / &2z BV . (1.7)

The parameters and characteristics of a UV complete model are cir, cyy, the tuned pa-
rameters o and the dimension of the relevant perturbation in the UV that leads to the
RG flow toward the IR to cftigy:

Fyy = dim (@) < 2. (1.8)

rel



The remainder of this article is organized as follows. In section 2 we define in detail
the models we consider and propose the classification problem. The [TT]|s perturbations
lead to massless particles where the conformal invariance is broken by non-trivial Left-Right
scattering. The structure of these massless left /right CDD factors are described in section 3.
In section 4 we present the thermodynamic Bethe ansatz (TBA) equations for this class of
models and list some generic UV completions, which we refer to as “minimal, diagonal,
saturated”. Our approach is applied to UV completions of the Ising model in section 5.
The interesting feature here is that there are two possible massless scattering descriptions
of the cig = % critical Ising model: one is based on the energy perturbation with a spectrum
consisting of a single Majorana fermion, the other is based on the magnetic perturbation
and has 8 massless particles based on the Lie group Fg [14]. For the Majorana spectrum
we provide a complete classification, where these cases were previously known [16, 18, 19].
For the Eg case we find 3 UV completions which are new, however we cannot argue that
these cases are exhaustive since there are too many particles to explore the full space of
possibilities at this stage. In any case the UV completions we find have % < cyy < % In
section 6 we study simpler cases based on su(3) and su(4) which have only 2 and 3 particles
respectively. In these cases we propose complete classifications assuming the restrictions
we itemize in detail. For the su(4) case with c¢ig = 1, we find 11 possible completions
with 1 < eyy < 5. All of these massless flows are consistent with the c-theorem [3]. The
fact that we find many UV completions that were not previously known indicates that our
bottom up approach is constructive. The appendix summarizes our notation for current
algebra CF'Ts based on a general simply laced Lie group G, and their associated cosets and
parafermions.

2 General definition of models and a proposed classification problem

Assume we are given a conformal field theory cfty formally defined by the action Scg,.
For our purposes we first need to provide a massless scattering description of the CFT as

follows. We assume there exists some integrable perturbation of the CFT by a relevant
(0) o

rel rol) < 2 in mass units described by the action

operator @/ of dimension dim(

rel

Sy = Serty + A / 2200 (2) (2.1)

. (0)
2-dim(®..[)  We also assume that the

where the massive parameter is given by A = [mass]
theory defined by Sy has a massive spectrum of a finite number of particles of physical
mass Mg, a = 1,2,..., N where N is the number of particle species. Being integrable, the
theory has a factorizable S-matrix. In this paper we assume the scattering is diagonal, so
that the two particle scattering is given by a scalar function Sg,(0) where 6 is the difference
of the usual rapidities of the two particles. For an overview of such theories in a broader
context we refer to the book [15].

Before taking the massless CFT limit A — 0, since the theory is integrable, there exists

an infinite number of conserved local currents satisfying the continuity equations

8§T3+1 = az@s—lu 8ZTS+1 = &z@s—lu (22)



where s is a positive integer with s+1 and —(s+1) the spins of Ty and T'sy1 respectively.
For s = 1 these are the components of the universal stress-energy tensor and the conserved
charges are left and right components of momentum. For higher s, the above currents

(0)

depend on the model, in particular the choice of ® . For instance, the spectrum of the
integers {s} depends on the model in question. Smirnov and Zamolodchikov showed that

from these one can construct well defined local operators [TT]s:

[TT]S = s+lTs+1 - 6571@371 (23)

s+1)

with scaling dimension (mass)Q( More importantly, perturbation by such operators

preserves the integrability [5]. Thus, we can consider the theory defined by the action

e =S+ as /d2 77, (2.4)

s>1

where a; are coupling constants of scaling dimension [mass]*Qs

that the operators [TT|s for s > 1 depend on the choice 0f<I> 0

rel

It is known that the perturbation by the irrelevant operators [TT]s simply modifies
the original S-matrix Su,(6) by a CDD factor [5, 20] to

. We emphasize once again

Suwp(0)  —  S990)S,(0), SH) = exp < > g8 sinh(s0) ) (2.5)

where the dimensionless coefficient g2 is given by
g% = —a; (mgmy)® K2 (2.6)

for some dimensionless coefficients h%°. This massive CDD factor satisfies the usual uni-
tarity and crossing relations:

sedd(gygedd(_gy =1, S (ix — ) = 5°4d(p) (2.7)

where we have suppressed a, b indices. In general the crossing relation involves @ which is
the anti a-particle.

With the above ingredients we can finally define precisely the type of model we are
interested in. We first need to select an integrable perturbation <I>(0) of cftg which deter-
mines a massive spectrum m, and their S-matrices S,,. The choice of <I>( 1) is not unique,
since there could exist more than one integrable perturbation of cftir. As stated above
the specific [TT)]s; depend on <I>£el) Although the model (2.4) is interesting in its own

right, the behavior is complicated by the competition between the relevant and irrelevant

perturbations since
(0) 1
A ~ [mass]?~dm(®r ) Qg ~ —————. 2.8
[ ) ® [mass]?s (2:8)
Thus in the deep IR where [mass] — oo, the az — 0 and the theory is dominated by the
relevant perturbation A\. On the other hand, in the extreme UV, [mass] — 0, A — 0 and
the operators [TT], are well defined and these irrelevant perturbations dominate, i.e they

control the UV behavior. At an intermediate energy scale there is cross-over behavior.



Now we consider the massless limit A — 0:

So = cftig T Z Qg /dZ-T [TT]S (29)

s>1

(0)

rel
particular massless scattering description for cftig, and then forget about it. Besides the
(0)

rel

where cftig = cftg. In other words we simply utilize the existence of ®_; to specify a

massless scattering description of cftig, the other remnant of ® ; is the specific operators
[TT)s, except for s = 1 which is universal. Since [T'T]; are irrelevant operators, the CFT
defined by Sc,, describes the infrared limit of S,. This is in contrast to Sy where S,
actually describes the UV limit, and it is very important to keep this in mind to avoid
confusion. As we stated above, we expect that S, describes the UV limit of S ,; this was
the point of view taken in [21].

In the massless limit where all m, vanish, one must distinguish between left (L) and
right (R) movers. By scaling the rapidity by § — 0r + A for (R) and § — 6y — A for
(L) with A — oo with mqe® = 7, finite,! the energy and momentum (F,p) can still be
parameterized by a “rapidity” 0:

right movers : E, = p, = %eer‘
left movers:  E, = —p, = %e‘eL. (2.10)

If there are no [TT)s deformations, (s = 0), (2.4) is then described by LL and RR
scattering matrices:

Sy (0) = Sppt(6) = Sap(6) (2.11)

where here § = 01, , — 01, or Or 4 —Or . These S-matrices satisfy the usual identities (2.7).
However, the LR and RL scattering matrices become trivial, SR:(9) = SLE(9) = 1, since
0] = |0r.0 — Orp| — oo. This would mean the theory is just the conformally invariant

Scttyy, if it were not for [T'T]s. This general framework for massless scattering was pioneered
in [17].

We now show that when «a; # 0, if the massless limit is taken properly the LR and RL
scattering remains non-trivial, consistent with the fact that conformal invariance is broken
by [TT)s. Furthermore, the massless LR, CDD factors follow from the appropriate massless
limit of the massive CDD factors (2.5). We argue as follows. In the massless limit m, — 0,
the g5 in (2.6) vanish and should be rescaled in such a way that

950 = g2e*t = —ay (Mariy)® W2 (2.12)

is finite. Now the CDD factors for LL. and RR become 1 since the g5 vanish with finite
0 in (2.5). However, the CDD factors for RL and LR become nontrivial due to (2.12).
Combined together with (2.11), the full S-matrices for (2.4) in the massless limit A — 0

I Therefore, the mass ratios remain unchanged.



become
Sap (0) = Sei(0) = San(0), (2.13)

S&L(ﬂ) = exp (iZﬁgbese/2) , SCI:bR(H) = exp (—iZ@fjbe—s"ﬂ) . (2.14)

s>1 s>1

where 6 = g — 01, and 60, — 6y in (2.14), respectively. We mention that the result (2.14)
was proposed in [21] by arguing that one needs to factorize the massive CDD factor as

Sep(0) = Si(9) - Sz (6), (2.15)

in order for the TBA equations to converge, however the argument presented above is more
complete and rigorous.

For the massless CDD factors (2.14), the following unitarity/crossing relations (2.7)
are satisfied

SRL(9) SRE(9 + im) = SYR(9) SYR (0 4 im) =1, SVR(9) SRL(—0) = 1. (2.16)

Note that the above relations are satisfied regardless of whether ¢ is real or not. In the
next section we will show how these S-matrices reproduce the universal result (1.3) for pure
[TT); perturbations using the TBA.

In summary the models considered here are defined by the action (2.9) and the S-
matrices (2.13) and (2.14). The classification proposed in the Introduction thus proceeds
in three steps.

Given cftig:

(0)

rel

(i) List the integrable perturbations ® ; and the corresponding spectrum and massless

S-matrices S and SRR for cftjg. For many CFTs, these are already known.
(ii) For each case in (i), classify the possible g% that lead to a UV completion.

(iii) We restrict to rational values of cyy since these are more easily interpreted in terms of
known CFTs. Requiring that cyy be rational is difficult to implement directly since
from the TBA this requires some very non-trivial identities satisfied by the Rogers
dilog function, many of which were previously unknown.

Although additional restrictions may ultimately be warranted, these are the main ones
considered in this paper.

All the diagonal scalar S-matrices considered in this paper are based on the Dynkin
diagram for a simply laced Lie group G, and are [TT]; perturbations of the coset [G]; =
G1 ® G1/G9 where Gy, is the current algebra at level k, i.e. a WZW model. The central
charge of [G]; is ¢ = 2rank G/(2 + h*) where h* is the dual Coxeter number. See the
appendix for a summary of these various cosets and our notation. The [G]; coset CFT
is a minimal model for G = su(2),su(3), Es, E7 and Eg, with central charges ¢ = cig =



146 7
2°527°10°
two distinct perturbations based on both su(2) and Eg. Thus the Ising case is the most

and % respectively.? Interestingly, for the critical Ising model at ¢ = % there are

interesting due to this duplicity. For Ising, the two choices in step (i) depend on whether
<I>§el) is the energy operator, which is a mass term for the Majorana fermion description, or
a magnetic perturbation by the spin field. In the first case the spectrum is just a single
massless Majorana fermion. In the second the spectrum consists of 8 particles whose masses
are related to the root system of the Lie algebra Eg. The methods below apply also to the
Fg and F; cases however we will not work out these cases in detail in this paper, but rather
focus on the su(2) and Eg cases for [TT]s deformations of Ising. We will also present some
results for su(3) and su(4).

3 Fundamental massless CDD factors

While the CDD factors given in (2.14) are directly connected to the [T'T]s by (2.12), it
will be important to express the massless CDD factor SR in eq. (2.14) in terms of basic
building blocks which can handle the UV behavior of the TBA in a controlled way.

Consider first only a single particle so that we can ignore the a,b indices in SRL In
this section we are concerned only with S®(6) which for simplicity we will mainly refer
to simply as S, except in some fundamental formulas. The RL S-matrices in (2.14) satisfy
the relations (2.16). As usual we assume there is a single mass scale m in the problem after
rescaling the rapidities defined by me® = m. Minimal solutions to the equations (2.16)
were considered by Al. Zamolodchikov [16]:

)
B (7 5
S(s) = 1;[ W0 T (3.1)

where here s is the center of mass energy
s = (pr +pL)2 =m-e (3.2)

where @ = 0r — 61, and p o< m?. When there are multiple species of particles, in terms of
rapidity this basic CDD factor generalizes to

Jab _ 0
H <z,uab MgMp € ) (3.3)

iy +mamb69

for some positive integer J,,. The number of these basic factors can be any positive integer
Jup in general, however not all have a finite UV limit; this is central to our proposed
classification problem. The dimensionless parameters ,ug)) /(mgmy) are also arbitrary but
their real parts should be positive such that the CDD factors do not introduce additional
poles in the physical strip. As we will see, these factors can lead to a well-defined UV

behavior, with a specific and calculable cyy.

2The minimal unitary models of CFT have ¢ = 1 — m <1,p=1,2,3,... which we will refer to

again below. These minimal models correspond to the coset [su(2)]x=p-



Now we need to find conditions for the two different forms of the CDD factors (2.16)
and (2.14) to match. In order to compare with (2.14), it is convenient to consider the
following function, which in any case will be needed for the kernels in the TBA integral

equations:
—i0plog Sap(0) =2 Y (—1)ETI2p (gimg)* e (3.4)
s>1,0dd

where ;
ab N\ —s
b= () (35)
j=1

Comparing with (2.12) and (2.14) one obtains an infinite number of relations

~ =~ \S S 5— ~a
B (ain)® = (1) /2 g (36)
for all odd integers s. This implies
b = Zas (—1)(s+D/2 pab, (3.7)

The above formula (3.7) is important since it relates the lagrangian couplings a; to the
S-matrix parameters ugjb). It is important to note that in order to relate (2.16) to (2.14)
it is important to first consider § < 0 in S®* and 6 > 0 in S™® in order for the phases to
converge, and then to analytically continue before comparing with (2.16), as pointed out
n [18]. Also, the above formula (3.7) corresponds to a strong fine-tuning since the infinite
number of 5% should be given by a finite set of parameters u((ljl;). If these conditions are
not met, the UV theories are not well-defined.

The S-matrix can then be written as

Jab
Sup (0) = [T T, (0) (3.8)
j=1 ab
where )
T
T3(8) = —tanh <5 (9 — B — 2)) (3.9)
and )
J .
Fab = b (3.10)
alllph

The kernel for the TBA equations below can then be expressed as

Jab
1
Ghy'(0) = —idplog Spy(0) =Y ————— . 3.11
b ( ) b ( ) = cosh (9_56%)) ( )

For 31 real, the kernel is real, as it should be. However the kernel can still be real if 8’s
come in complex conjugate pairs. For a purely imaginary pair 8U) = +ira (a > 0), the
massless CDD factor becomes

_ sinh# —isin7y

(3.12)

Tina(0) T-ira(0) = Foq1/2(0), with F,(0) = Snh 0 1 isinmy



Note that F(6) has the same form as a massive CDD factor satisfying (2.7) . We will also
need the kernel based on F:
4 cosh O sin 7y

— 10y log F.,(0) = . 3.13
09 log F(0) cosh 20 — cos 27y ( )

We collect integrations of these real kernels here since we will need them below:

> df
- z/ 2—69 log T3(0) = 3 for 8 real (3.14)
oo 27
and
< df 1, ify>0
—1 — Oglog F(0) = 3.15
/—0027r blog (6) {—1, if v<0. (3.15)

We will show below that the UV theories, if they exist, can be partially identified using
only these integration constants and the integers Jg;. Since the latter are independent of
the parameters (3,7, the UV theories can be classified without referring to explicit values

of the parameters ,ug)) as long as the ag’s satisfy the fine-tuning conditions (3.6).

4 General thermodynamic Bethe ansatz for [TT], deformations

For massive theories the TBA was developed in [26, 27]. We are here concerned with
massless flows, which is different in some important respects.

4.1 TBA equations for the ground state energy

Assume we are given S(I;L = SgbR and S&L, S;“I}%. From these we define the kernels in the
usual way:
Gy (0) = Ga'(0) = —idplog Syiy* (0), (4.1)
Ghy (0) = —idlog Spy-(0),  Gi'(0) = —idylog Sgpt(0) = Gy’ (—0), (4.2)

where we used the last relation in (2.16). The standard derivation of the TBA gives

meR
en(0) = =5’ = 3 |G+ LiNO) + G+ L (9)] (4.3)
b
meR _
en(0) = 5=’ = " |Gy < LE(0) + G+ Li'(6)]. (4.4)

b

L’R . . .
where we used the short hand notations LR = log (1 + ¢~ ¢a ), appropriate to a fermionic

TBA. Above * denotes the convolution: (G*L)(0) = [0 d0'G(0—0")L(0")/2n. From these

equations, it is obvious that e2(0) = eL(—#). In terms of the pseudo energies £,, one can

find the scaling function of the ground state energy from

(L +e7PLk]do = - Ea: % /_OO e’ LR dp. (4.5)

~10 -



As a check of our pure [T'T]; massless CDD factors, we can confirm the result from
Burgers equation explained in the Introduction from these massless TBA equations. If all
as>1 = 0, the CDD factor can not be given by basic factors T or F,,. Instead, the kernel
GRL can be directly computed from (2.14)

~ab

Gy (9) = Gt (=0) = e, gi" = —au i (4.6)

Inserting these into (4.3) and (4.4) and using (4.5), one can obtain the same TBA system

without [T'T]; but with shifted R:

~

R
m2 e 3Gy, (4T
b

a a

Mo R
eR) = T _STGRR LR, ch(9) =
2 b
with
R=R- 27‘(‘0[1 EO(R) (48)
Therefore, the ground state energy with [TT]; should be given by that of the CFT with
the shifted R,

_ TCIR
6(R — 27TO(1 Eo(R)) '

EO(R) = cht(R - 27‘(‘0&1 Eo(R)) = (4.9)
Solution of this quadratic equation reproduces the Burgers result (1.3).

For the IR limit MR > 1 with general [TT]s, one can solve the TBA as a power
expansion of ¢t = 1/(M R)? which is consistent at least up to ¢3. At this order, there are
new contributions from ag3. This shows that the S-matrices and TBA are consistent with

general [T'T)s perturbations.

4.2 Plateaux equations and cyy

The TBA equations (4.3) and (4.4) for e2%(6) can be solved only numerically for generic
scale R. However, in the IR and UV limits they can be solved analytically from which one
can extract information on both cir, cyyv and in principle I'yy, although for the latter, the
computations are more difficult.

Consider the IR limit R — oo first. Since the driving terms m,Re? in (4.3) get large
while the convolution terms remain finite, the pseudo energies e&(6) diverge for most values
of 0 except a domain 6 < — log i, R where m,Re’ becomes very small so that e&(6) can
be finite. Similarly, ¥(6) in (4.4) can be finite in the domain 6 > logm,R. There is
no common domain of § where both () and £X(#) are finite. Now because the kernels
Gap(0 — @) in the convolution are exponentially small as [# — 6’| > 1, the convolution
integrals with L(#') in (4.3) become negligible and decoupled in the TBA equations for
eR. Similarly, the convolution with Li*(#’) can be neglected for - in (4.4). Then, the
resulting TBA describe the IR, CFT.

The UV limit R — 0 is more complicated. The driving terms 74 Re’ vanish and the
pseudo energies £¥(6) become finite in the domain of § > —|logm,R|. Similarly, €k (6)
are finite for § < |logmgR|. Therefore, both pseudo energies () are coupled in the
TBA equations for —|logm,R| < 6 < |logm,R|. In addition, the pseudo energies &% ()

a
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become virtually flat, namely, 6-independent in the above domain of 8. This “plateaux”
behavior occurs for most kernels except for some exceptional cases. If this is the case, LbR’L
can be pulled out of the convolution integrals, leaving the integrals of the kernels. Then,
the non-linear integral TBA system is simplified to a set of simple algebraic equations for
the plateaux values of the pseudo energies, 7. We refer to these as plateaux equations.

Since £2(0) = eB(—0), both have the same plateaux values &,. First consider the IR,

limit, where the convolutions terms with GaRbL and GaLlf{ do not contribute. The IR plateaux
equations are

1 1\ Kab
—=]] <1 + A) (4.10)
Lq b Tp

with Z, = €f* and

> dh o df
w;/ R e (4.11)

—oo 2T —o

If the solutions to the plateaux equations are ¥, = z,, the IR central charge is then

6 1
= — L 4.12
em = 220 () (412

where Lr is the Rogers dilogarithm function defined by

Lr(z) = Lis(2) + & log |z|log(1 — 2) (4.13)

where Lig(2) = >20° ; 2" /n? is the usual dilogarithm.

Turning on S}, the UV plateaux equations become

1 1 kab+7§\ab
— =11 (1 + A> : (4.14)
ZTa ; Zp
in terms of the RL exponents of the integrated kernels
~ o df  df
b= [5G =[Gl (415)
—00 —00

Based on the analogy with the Ising case considered in section 5, which involves F,(6) with
v = a+1/2, where o was interpreted as a marginal deformation, we will restrict ourselves
to F, factors with v > 0 for the remainder of this paper.®> From (3.14) and (3.15), one
then sees that k., must be a positive integer multiple of 1/2:

T Jab

It will be convenient to express these as elements of the matrices K, K:

{ka} =K, {ka}=K. (4.17)

3This restriction may in principle be relaxed, however we have not explored this possibility here.
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The UV central charge is given by

6 1 1 12 1
= — 2L —L = — L — . 4.18
=53 (0 (r5) i) = e S ()~ @19

From the c-theorem [28], cyyy > cr should hold and indeed does in the cases presented

below.

There are two generic cases we refer to as “saturated” and “diagonal”:

Saturation point. Since &, must be real, T, = efa must be real and positive. The
smallest possible value of Z, is zero, i.e. &, = —oco. This happens if K = K©) satisfying
ZLq )

This saturated limit gives the largest possible value of cyv:
max cyy = 2 (#particles) — cig = 2 rank G — iR - (4.20)

In this equation, for the cases below based on the Dynkin diagram for the group G,
#particles = rank G.

Diagonal case. This is another generic solution. If

—~

K=-K, = —=1Va, (4.21)

|-

which gives
diagonal case : cyy = (#particles) — cig = rank G — ¢cjg = ¢(G2/G1) (4.22)

where we have used 12 Lr(1/2)/7? = 1, and G2/G1 is a coset CFT of two WZW models
based on the same group G but with two levels 1, 2.

The matrix K is completely fixed by the CFT cftig with no further freedom. However
the above K(© = 1 — K is not the unique choice of K that leads to the saturated cyy. Any
other choice

K9 =KO 4 H (4.23)
where 1, = (1,1,1,...)7 is an eigenvector of H with eigenvalue 0 also has z, = 0, Va.
Namely

Hl,=0 < > Hyp=0, = Z,=0 Va (4.24)

b
Let us anticipate some aspects of the cases we will consider below. All the IR CFT
have S SRR structure related to an ADE Dynkin diagram. If Z is the incidence matrix

of this diagram, then K is fixed:

Ke-ol RO _q_g-_% (4.25)
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In general the elements of KO are not integer multiples of 1/2 as we require in (4.16), thus
we will choose H such that it is. Due to symmetries of plateaux equations, for the cases
we examined in detail, all solutions Z, are identical for K@ and K©) with our choice of

I (1 + })Hb —1. (4.26)

b Lo

H since

5 UV completions of the Ising model

As already stated, for the Ising model CFT in the IR, there are two choices in step (i)
(0)

to is the energy operator which is a mass term for the Majorana

depending on whether ®
fermion description, or a magnetic perturbation by the spin field. In the first case the
spectrum of the CF'T is just a single massless Majorana fermion. In the second the spectrum
consists of 8 massless particles related to the root system of the Lie algebra Eg [14]. Based
on this, in this section we will classify some possible UV completions of the Ising model
and will present 6 of them in some detail, however as we explain, we are unable to claim

as yet that these are exhaustive.

5.1 Energy operator spectrum: free Majorana fermion

If (13521) is the energy operator, then since this is just a mass term for the Majorana fermion
the spectrum consists of only one type of massless particle, the massless Majorana fermion
itself. Thus S = SRR = _1 and ¢y = % The spectrum of spins for the local integrals of
motion is known to be s = odd integer. This is the su(2) case of the su(n) cases studied
in section 6.

Now as explained above, we deform this IR CFT by the set of [TT]s appropriate to the
energy perturbation, but with fine-tuned coefficients a;. It remains to specify the possible
SRL " The general form of this S-matrix was presented in section 3, where here we can

SRL are constrained by the requirement that

ignore the indices a,b. The possibilities for
the total kernel should be real and its integral is bounded so that the plateaux equation

gives well-defined central charges cyy. This leads to the condition

k:/ DGRy < 1. (5.1)
oo 2T

This is evident from the “saturated limit” described in the last section. The parameters of
the plateaux equation are k = 0 and the single parameter k. The results (3.14) and (3.15)

SRL

imply that can have at most 2 factors in the product [[; in (3.8). The complete

classification then has 3 cases:

1. Minimal case. Here there is only one T factor with 3 real, which we can chose to
be zero by shifting the rapidity 6

ST () = To(0), (5.2)

which corresponds to k = 1/2. The solution to the plateaux equation is 7 = (v/5 — 1)/2,
which leads to cyy = 1—70. This is the flow from the tricritical Ising to Ising model first
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obtained by Al. Zamolodchikov [16]. The N’ = 1 supersymmetry in the tricritical Ising
model is spontaneously broken and the goldstino particle is the Majorana fermion. This
case is the [su(2)]y to [su(2)]; coset flow described in the appendix, where our notation
is explained there. The present paper describes this flow for other Lie groups G in much
greater detail than previous works, for instance in [29]. Based on this, we know the di-
mension of the relevant perturbation in the UV is 6/5 from (A.5). Let us summarize this

lution:
solution . 6

A Ty — —
107 uv 57

We should mention that this minimal case does not always correspond to lowest possible

CR =73 CUvV = cftyy = [su(2)]2. (5-3)

value of cyy, as one can see from table 2 for the su(4) case.

2. Saturated case. The bound (5.1) is saturated with two factors:

StH(0) = (Tn(9))* = F10). (5.4)

which corresponds to k = 1. The solution to the plateaux equation is = 0. This is
a somewhat delicate limit since Lr(z) has a branch cut along R(z) > 1. Nevertheless,
the limit & — 1 can be approached from below, and using 12Lr(17)/a2 = 2 one finds
cuv = 3/2. This CFT also has N/ = 1 supersymmetry, and corresponds to the current
algebra su(2),, i.e. the su(2) WZW model at level k = 2. (Once again see the appendix for
notation). This solution was found in [18].

3. Marginally deformed saturated case. The bound (5.1) can also be satisfied with
the pair of factors {3()} = {+ira} with a > 0, which also has k = 1:

SRL(G)::P;+%(0) (5.5)

Thus there is a one parameter deformation of the saturated case which also has cyy = 3/2.
This case must be an exactly marginal perturbation of the saturated case. In fact this
corresponds to a massless N = 1 super sinh-Gordon model studied in [19] with

1-b?
o= )] (5.6)
where b is the coupling constant of the theory. Note that the o = 0 case in [18] corresponds
to the self-dual coupling b = 1. This result can be confirmed by analyzing the TBA in the
UV domain where the effective central charge converges to cyy = g very slowly in a pattern
of inverse powers of log(mR), typically obtained by the reflection amplitudes of Toda-like
exponential interactions. Just as in the flow from the tricritical Ising to Ising model, the
massless Majorana fermion, the only particle during the whole RG flow, is a Goldstino
which arises from a spontaneous N = 1 supersymmetry breaking. In this case we do not
specify I'yy, which is in principle determined by the TBA, since it should depend on the
parameter «. For this reason, below we will only present solutions without the marginal «
deformation, i.e. we will restrict to F () CDD factors with v > 0, typically v = 1/2.
Finally, for this free Majorana case, the generic diagonal solution described in section 4
does not lead to any RG flow since K = K= 0, implying cyy = cr. Given the simplicity
of the massless spectrum, the above 3 cases are a complete classification.
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Figure 1. Eg Dynkin diagram.

5.2 The magnetic E5 spectrum

We now consider a spectrum dictated by the perturbation of the critical Ising CFT by the
spin field o(x) of dimension 1/8,

S, = Slsing + )\/d2{l/‘ O'(I‘) (57)

The spectrum based on this perturbation is known to consist of 8 massive particles related
to the root system of the Lie algebra Eg [14]. The significance of Eg can be understood
using the GKO coset construction and the results in [30]. The completely bootstrapped
massive S-matrix is also known [31], however we will only refer to its integrated kernels K.
For the CFTs in question, we refer the reader to the appendix, with G = Eg. The data
one needs is dim Fg = 248, rank Fg = 8 and h* = 30. The allowed spectrum of spins s is
the odd integers not divisible by 3 or 5:

{s} =1,7,11,13,17,19,23,29 mod 30. (5.8)

This case is considerably more complicated than the su(2) case above which only had
one particle with {kq} = K = 0. Below we will present some simpler cases based on su(n);
we present these Fg results here for completeness of this section, however the reader may
benefit from understanding the simpler cases of the next section first.

The spectrum of masses and the completely bootstrapped S-matrix Sy, are known [14].
For instance, mg/m; = 8cos?(r/5) cos(2m/15) etc. However we will not need all these
details in order to study [TT]s deformations; they are implicit in S®R. The TBA from
the Sgp is 8 coupled non-linear integral equations and quite complicated. The analysis is
greatly simplified by a universal form of the kernel [32],

1 -1 1
S — — 00 — - —— T, 5.9
( . b<w>) ~ FenoT (5.9)

where g, (w) is the Fourier transform of the kernel Gy;(0) and Z; is the incidence matrix
for the Eg Dynkin diagram. With the labeling of nodes in figure 1 one has

(5.10)

N

I
SO0 OoOO+HOO
OO OOOOO
OO OOOR
HOOOOOoOOO
OHOOOHROO
—HOOoOOoOOoOoO—O
HOOHROOOO
OHFROFROOO

With [TT]s deformations, the standard derivation of the universal TBA from (5.9) is
not valid because GE})L(Q) need not satisfy similar identities. For a complete description we
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should use the original form of the TBA (4.3) and (4.4), however for some properties this
isn’t necessary. The plateaux equations arising from the TBA in the UV limit need kg
in (4.17), which can be computed from ¢g,(0) by taking w — 0 limit for (5.9)

3 46 6 8 8 1012
4 7 8 1012 14, 16 20
T 6 8 111216 16 20 24
K =— — 6 10 12 15 18 20 24 30 (511)
27T 8 12 16 18 23 24 30 36 ' '
8 14 16 20 24 27 32 40
10 16 20 24 30 32 39 48
12 20 24 30 36 40 48 59

The many large integers in the above K matrix reflects the fact that the S-matrices
SLL SRR have many factors analagous to F,(f) factors due to (3.15), and most of them
give a negative contribution.

We limit the possibilities for K based on the saturated limit which has the largest cyy.
The saturation point is defined as (4.19) One solution is

— 2
KO — , 12
57 (5.12)

Since all the entries of K(© are already half-integers, there is no need for the matrix H
in (4.23). Following insights from the su(2) case above, we consider K of the simple form
which generates real solutions for Z,’s

22334456

24456 7 810

n —0) 346 6 8 81012

78 7700 356 8 9101215
Kn—gK =Nl 46 8 912121518 | - (5.13)

47 8101214 16 20

5 8 10 12 15 16 20 24

6 10 12 15 18 20 24 30

From results in section 4, in particular (4.16), we require entries of K to be integer multiples
of 1/2. This allows n =1/2, n =1, n = 3/2 or n = 2. Since there are many particles, we

SRL in terms of the CDD factors of section 3

do not present here the detailed S-matrices
that lead to the above K, n, although we know them; we will do so below for the simpler case
of su(3). For all cases considered in this paper we found such S-matrices and confirmed
the plateaux values of cyy by solving the full TBA equations with the appropriate rapidity
dependent kernels. The plot in figure 3 is typical.

Let us write the plateaux equations in a uniform way that depends on n, where n =0
is the conformal case with Z, = x,. They can be rewritten in the simplest possible way
in terms of the sparse matrix Z. We found that the following form was most amenable to

finding explicit algebraic number solutions:

-~ Iab726ab — 1 néabil-ab
11 @) =] (1+= : (5.14)
b b Lo

By definition all solutions to these equations are algebraic numbers, however they don’t
necessarily have simply presentable expressions.
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Conformal case. Here n = 0 and T, = z,. Remarkably the solutions are relatively
simple, only involving the irrational /2

{z1,29,..., 28} = {24+ 2V2, 5+4V2, 114+ 8V2, 16 + 12v/2, 42 4 30V/2,
56 + 40v/2, 152 4+ 108v/2, 543 + 384+/2} . (5.15)

Also remarkably, cyy in (4.18) is exactly equal to % due to some evidently non-trivial
identities for the Rogers dilog Lr(z). For the cases with non-zero K, the dilog identities
that are implicit below are certainly unknown.

Minimal case. Here n = 1. Now the solutions are not as simple as in (5.15), but can be
reduced to roots of various quintic polynomials. For instance, 1 = 3.228 ... is one root to
the polynomial.

-2t 523 4222 +42 4+ 1=0. (5.16)

We thus content ourselves with the numerical solution:

{Z1,Z9,...,Ts} = {3.228, 6.742, 12.653, 18.085, 39.853, 51.197, 118.251, 344.174}.
(5.17)
Again rather remarkably the expression in (4.18) gives exactly cyy = % In this case the
UV limit is the p = 9 unitary minimal model (see the previous footnote). Referring to the
appendix, the UV limit is the [Egls coset. Let us summarize:

21 2
FUV = -, CftUV = [Eg]g (518)

_ 1 ——
CIR = PR cuv 227 11

Generally, all the “minimal” cases considered in this article correspond to the coset [G]a,
and have dimension I'yy = 6/(3 + h*) based on (A.5).

Saturated case. Here n = 2 and all Z, = 0. The formula (4.18) gives cyy = %, which
is that of the Eg WZW model at level k = 2, here denoted Ejg.2. Let us summarize:

31
CIR — % Cyv = 5, CftUV = E8;2 (5.19)

Both of the above cases parallel the Majorana case since both UV theories have a
fractional supersymmetry with a conserved current of spin 31/16 according to (A.8) and
the massless degrees of freedom perhaps can be interpreted as Goldstone particles. We will
continue to comment on this below.

Diagonal case. Here K=-K , and this leads to T, = 1 Va. As described above and in
the appendix, the UV CFT can be identified with the Pfy parafermion based on Fg. To

summarize:
15

?a
A few remarks on n = 1/2,3/2 which are potentially viable. For n = 1/2, there exists
solutions {Z1,...,2g} = {4.076,...,665.515}. However cyy = 0.6713 is irrational to the

CIR, = % cyy = cftyy = Pfs. (5.20)
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best of our tests, thus not a unitary theory. Similarly for n = 3/2. As stated in section 2,
we do not include these cases in our classification.*

Since f(\n has entries with large integers, it is conceivable, if not likely, that there are
other solutions with cyy < % However this is a large space of possibilities to explore,
and we consider it beyond the scope of this paper. For this reason we cannot claim the
above Fg cases are complete. In fact, in the next section we consider simpler cases with
less particles where there are indeed solutions in addition to the generic cases listed in

section 4, and a complete classification is doable under some assumptions.

6 Some su(n) cases

In this section, we consider [su(n)]; coset CFTs perturbed by [TT];. The case of su(2)
is the Majorana fermion spectrum studied in section 5. For G = su(n), dimG = n? — 1,
rank G = n—1, and h* = n. The operator <I>§21) in section 2 is the field @Egl);kzl in (A.4) with
dimension 4/(n +2). These theories are integrable and described by known exact diagonal
S-matrices for n — 1 massive particles, which can be obtained from those of the su(n)
affine Toda theories by keeping factors independent of the Toda coupling constant [30, 31].
Following our procedure described in section 2, we introduce [T7T], and corresponding CDD
factors. Then, the massless limit of the S-matrices generate RG flows to UV theories. Since
su(n) with small n is far simpler than the Eg case, a detailed classification of possible UV
completions is possible.

6.1 Three state Potts: su(3) with cig =4/5

The [su(3)]; coset CFT perturbed by the relevant operator @521) with dimension 4/5 has two
particles of the same mass. The coset CFT has central charge 4/5. This CFT is equivalent
to [su(2)]s which describes the three state Potts model at its critical point. This theory
has Z3 symmetry and is actually the Z3 parafermion defined by another coset su(2)/u(1).
The latter parafermion is not the same as the su(3) based parafermion Pfy described in
the appendix.

The matrices K and K(©) are given by (4.25)

K=-1(12)  go_2(21) (6.1)
3\21 3\12

Since K© does not consist of only half-integers, we need a matrix H as described in
1(-11

H=- 6.2

). (6:2)

TO) _FO) 4 g % (2 2) , (6.3)

section 4:

which leads to

22

4We checked rationality up to 30 digits using “Rationalize” in Mathematica.
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With this choice of H, (4.26) is satisfied since Z; = Zg, thus solutions with K© and K(©)
are identical.

In this case with only 2 particles, it is feasible to attempt a complete classification.
Based on K (0/), we thus consider

n2 M

E:i(”l ”2>. (6.4)

where ny,n9 € {0,1,2}. Of course, ny = ng = 0 is just the conformal case with cyy = ¢Ir.

Minimal case. Here (n1,n2) = (1,1). The SRt matrices generate the RG flow from the
IR [su(3)]; with cig = 2 to [su(3)]2 with cyy = £ in the UV. We claim that the S-matrix
elements that generate this flow are

SEL — T14(0), a,b=1,2. (6.5)

Plateaux values Z, are given in the table 1. As it turns out the generic diagonal case
described in section 4 also has cyy = g and presumably is the same as this minimal case.
Following the appendix, the UV CFT can be identified with the parafermion Pfy with
integrable deformation by a relevant operator with I'yy = 1.

Saturated case. Here (n1,n2) = (2,2). Now we choose

SEL — F1 (0), a,b=1,2. (6.6)
Then, in the UV it flows to a new cftyy with cyy = %, which can be identified as the

current algebra su(3),. As one can see in the LX(8) plot (bell shape) in figure 2, the naive
plateaux assumption is just barely valid in the saturated case. However the numerical
solutions of the full TBA confirm that the plateaux equations determine the central charge
correctly as can be seen in figure 3.° This means we can use the plateaux equations even
for those cases which do not show robust plateaux behavior. We also point out that c¢(mR)
shown in figure 3 behaves in a rather normal fashion.

The UV CFT’s in the two above cases, [su(3)]2 and su(3), both have a fractional
supersymmetry with a conserved current of spin 8/5 according to (A.8). In analogy with
the su(2) Ising case, the massless particles which survive the flow can perhaps be interpreted
as Goldstone particles for this broken fractional SUSY, however this suggestion clearly
requires more investigation.

Spanning the space of K (09, i.e. nq,ng9, we find one additional exceptional case with
cuy = % where (n1,n2) = (2,1) or (1,2). One possible interpretation of this UV CFT is
two copies of the IR minimal model each with cig = %, however we cannot conclusively
make this identification from the value of cyy alone. These three UV completions, which
we believe to be complete, are summarized in table 1.

®One can notice a slower convergence for the saturated case which reflects the inverse powers of log(MmR).
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Figure 2. L¥(6) for minimal and saturated cases of su(3) at mR = 1077.

3-5 T T
—— minimal
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25¢
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Figure 3. Minimal and saturated RG flows for su(3): ¢(mR) vs log(mR) by solving TBA numeri-
cally. The IR central charge (mR — 0) is c;r = 4/5. One clearly sees that both trajectories arrive
to cftig from the same direction, namely TT.
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(n1,n2) T1 =179 cuv cftyy
(0,0) ‘/52“ CUV = CIR = % cftyy = cftig = [su(3)]1
(1,1) 1 g Pfy  “goldstino”  (minimal=diagonal)
(2.1).(1,2) | 5 : [su(@) @ [su(3)]s ?
(2,2) 0 % su(3), (saturated)

Table 1. su(3) results.

6.2 su(4) with CIR = 1
In this case the K matrices (4.25) are

(121 (321
K=-2l222], K@:§242. (6.7)
121 123

It turns out to be useful to introduce an H matrix, as described in section 4.2, to simplify

the form of K (©):
—-10 1

1
H = 3 0001, (6.8)
1 0-1
which leads to
111
KO=KO1tHg=(121]. (6.9)
111
Based on the above K' (0/), we perform a complete classification based on the following
space of K:
niy n3 n3
K=3|n3nans|. (6.10)
n3 n3 ni

Spanning the space of (ni,n2,n3) we find 11 rational UV completions, which are sum-
marized in table 2. The values 7 = 0.8019 and Z; = 1.2469 are solutions to the cubic
equations
3 2 _ 3 2 _
=22 —x+1=0, 2°4+2°-22-1=0 (6.11)

respectively.

Let us make some remarks on the results in table 2. For the generic cases, “minimal,
diagonal, saturated” we can identify the cftyy based on arguments in section 4. For the
minimal case we know that I'yyv = 6/7 (see appendix). Since Pfy = su(4),/su(4),, it is
natural to expect that some of the additional cases with cyy equal to integer multiples of
1/5 are related to su(3) subgroups of su(4), such as su(4),/su(3);. We have tentatively
indicated such identifications in the table. However not all exceptional solutions can be
explained this way, in particular cyy = %, 1—73, and other solutions which are multiples of
%. Complete identification of the field content of UV theories in addition to their central

charge cyvy is beyond the scope of this paper.

- 292 —



(n1,n2,n3) | (21 =123, T2) cuv cftuv
(0, 0, 0) (2, 3) Cyv = CIR = 1 CftUV = CftIR = [su(4)]1
(2,0,0) | (1.2469,4.0489) 2 ?
(2.4,0) | (L 452 L ?
(0’ 2’ 1) ” ”
(1,2,1) (1.2469,1.8019) 4 [su(4)]2 (minimal)
(0,0,2) (1, ¥52) 9 su(4),/su(3), ?
(1L,4,1) | (V55,452 ¥
13
(2,2,1) | (0.8019,2.2469) 13 ?
(0,2,2) (1,1) 2 Pfy (diagonal)
(27 47 1) 7 7
(1,0,2) | (S 452 U ?
(0,3,2) (1,Y51) ”
V5-1 12
(17 27 2) ( 2 1) 5 ?
2.2.2) 0,1) 1 su(4),/su(2), = su(d), /u(1) 7
2,4,2) 0,0) 5 su(4), (saturated)

Table 2. su(4) results.

6.3 Remarks on general su(n + 1)

The coset [su(n+ 1)]; deformed by the relevant field @Egl) in section 2, i.e. the field (I)Egl);kzl
in (A.4), has n particles with well-known masses and S-matrices. The complete S-matrices
can be easily written down [31]. From these, one can find the matrix K, which should be
K =-T7/(2—1) as above.

We have found that the K which generates the RG flow from the IR CFT [su(n+ 1)];

to the UV CFT [su(n + 1)]2, i.e. the minimal case, is given by the following n x n matrix

K:% A I (6.12)

The above K only describes the generic minimal flow. Based on the su(3),su(4) cases
above, we expect many more solutions with UV completions that are beyond the scope of
this paper to attempt to classify.
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7 Conclusions

We have shown how UV singularities in CFTs perturbed by the leading irrelevant operator
[TT); = TT/7? can be resolved by including an infinite number of additional higher dimen-
sional irrelevant operators [T'T)s~; with tuned couplings as. By requiring integrability, we
have argued that the classification of the possible UV completions is a well-defined problem,
and we worked out many cases with diagonal S-matrices. We found many UV completions
that were previously unknown, indicating that our proposed classification problem is fea-
sible and constructive.

The UV completed theories are in principle completely defined by the S-matrices we
propose. Our main tool is the TBA which can readily identify the central charge cyy
from the plateaux equations, as well as the conformal dimension of the relevant operator
perturbation in the UV by carrying out a more detailed analysis of the TBA in the UV
region which we will not perform in this article. This information will be essential to figure
out an independent quantum field theory description of the UV field content and its field-
theoretic relevant perturbations that lead to the RG flows to the IR that are implicit in the
TBAs we propose. Thus the bottom up approach from a known IR CFT to a new UV CFT
do not as yet completely determine the field content of the UV QFT, except in some cases,
hence some of the “?” in tables 1 and 2. This is perhaps the main open question raised by
this work. In fact one should entertain the possibility that the cftyy that we could not as
yet completely identify may perhaps need to be eliminated by additional restrictions not
considered here.

This work raises several other questions which could lead to interesting developments:

o We have clearly stated the restrictions we have imposed on our proposed classification
problem that lead for instance to tables 1 and 2. Can these restrictions be relaxed
or strengthened, which could lead to additional or less possible UV completions?

o Are there additional cases based on the Eg magnetic spectrum of the Ising model
which are beyond the 3 cases we have found, and can they be completely classified?

e Although the general ideas presented here extend to non-diagonal theories, it would
be interesting to work out some examples in detail.

e How important is the role of symmetry? For some completions of the Ising model,
the massless degrees of freedom, a Majorana fermion, were understood as Goldstone
particles for broken supersymmetry. For some other cases we suggested that a broken
fractional supersymmetry is playing a role. Can a generalized Goldstone theorem be
developed? The fact that the maximal cyy corresponds to the Go WZW model
suggests that this may be possible.

e Are there interesting physical applications involving the Ising model in a vanish-
ingly small magnetic field with non-zero 7T perturbations? If so, then results from
section 5.2 may be useful.
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A Current algebra CFTs and their cosets

Let G denote a simply laced Lie group (ADE-type). The data we will need are the di-
mension of G, its rank, and its dual coxeter number A*. They are related by dimG =
(h* + 1)rank G. Let G denote the WZW conformal field theory based on G at level k,
where k is a positive integer [33, 34]. It has central charge

k dimG

k)= . Al
o) = S5 (A1)
Then consider the GKO coset [35]
Gr®G
6 = 24 (A2)
k+1

with central charge ¢([G]i) = ¢(k) + ¢(1) — ¢(k + 1). For this series of cosets, the following
models are integrable [30]:

S\ = S[G]k + )\/dQCU (I)Egl);k (A.3)
where @Egl); & is the coset field:
o (k;0) ® (1; o)]
(I)rel;k - { (k + 1;Adj) . (A4)

Above, o and Adj denote the scalar and adjoint highest weight representations for the Gy
current algebra respectively. This relevant perturbation has dimension:

) _ Q(k‘ + 1) (A.5)

: (0)
dim (q)rel;k - k+14+ h* !
There is at least one UV completion we can anticipate based on conjectured massless
flows in coset theories. For negative sign of A, the spectrum is massive, and the S-matrices
can be obtained from an RSOS restriction of the G affine Toda theory [30]. For positive
)\, the model is conjectured to be a massless flow from [G];, to [G]r_1.° The flow arrives to

the £ — 1 theory via the irrelevant operator

0) ~ [(k—1;Adj) ® (1;0)
irrellk—1 — (]{3, o)

o (A.6)

6See for instance [29], and references therein.
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of dimension 2(1 + h*/(k — 1 4+ h*)). Now, it is important to note that for k = 2, the
operator (1;Adj) does not exist, thus for this massless flow the [G]2 theory should arrive

to the [G]; coset CFT via the [T'T]; operators. Thus in the UV the theory is described by
Sov = Sy + A / 220, (A7)

Based on these ingredients, in this paper we consider the model defined by (2.9), where
cftir = [G]1. One choice of oy gives a UV completion which behaves as (A.7) in the UV,
which we refer to as the minimal case. For thislevel k = 2, I'yy = dim(@iﬁl)ﬂ) =6/(3+h"),
and we indicate this in the body of the paper. Although this coset flow has been proposed
already, the exact S-matrices and TBA have not previously been worked out at the level
of detail presented in this paper.

We also wish to point out that the L,R chiral components of the primary field <I>i(g)el; 2
are non-local conserved currents Jisy for a fractional supersymmetry with dimension
(and spin)

B

= 1 _ .
A Uus) =1+ 57 7 (A8)

This symmetry also exists in the complete series of cosets Gy ® G2 /Gy for all £, including
the WZW model G2 which arises in the ¢ — oo limit. For G = su(2), where h* = 2, this
spin 3/2 current generates an N' = 1 supersymmetry.

In sorting out the UV CFT’s it is useful to introduce a free field content for the current
algebra G. The cosets can then be described by the introduction of background charges
for the bosons. One needs rank G bosons and some additional non-abelian parafermions
based on Gy:

h*(k—1
Pf), = G, /u(1)"kC c(Pfy) = rankG (H) . (A.9)
k 4+ h*
Throughout this paper we do not display the G dependence of Pfs since this evident from
the context.
It is interesting to note that comparing central charges, one can potentially make the

identification

h*rank G
PfQ—GQ/Gl, Cc = W (AlO)

We have not studied whether the above is an exact equivalence, nevertheless we will use this
insight for the su(4) cases above with Go/H;, where H is a subgroup of G, to tentatively
propose the identification of some UV completions. For the [TT]s deformations we are here
mainly concerned with the Pfip_, case. Note that for G = su(2) at level k& = 2, the Pfs
parafermion is just a Majorana fermion with ¢ = %
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