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Abstract

We construct and solve the boundary Yang-Baxter equation in the RSOS/SOS representation,
We find two classes of trigonometric solutions; diagonal and nondiagonal. As a lattice model,
these two classes of solutions correspond to RSOS/SOS models with fixed and free boundary
spins, respectively. Applied to (1+1)-dimensional quantum field theory, these solutions give the
boundary scattering amplitudes of the particles. For the diagonal solution, we propose an algebraic
Bethe ansatz method to diagonalize the SOS-type transfer matrix with boundary and obtain the
Bethe ansatz equations.

1. Introduction

In the study of the two-dimensional integrable models of quantum field theories and
statistical models, the Yang-Baxter equation (YBE) plays essential roles in establishing
the integrability and solving the models. In the field theories, the YBE provides a consis-
tency condition for the two-body scattering amplitudes ( S-matrices) in the multi-particle
scattering processes since the scattering is factorizable. With unitarity and crossing sym-
metry, the YBE can determine the S-matrix completely, although not uniquely due to
the CDD factor which is any function of the rapidity satisfying the unitarity and cross-
ing symmetry conditions. This CDD factor is usually neglected under the minimality
assumption. In the statistical models, if the Boltzmann weights satisfy the YBE, row-
to-row transfer matrices with different values of the spectral parameter commute each
other so that the models are integrable.

Recently, there has been a lot of efforts in extending these approaches to models with
boundaries. The main motivation is that these models can be applied to 3D spherically
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symmetric physical systems where the s-wave element becomes dominant. The one-
channel Kondo problem and the monopole-catalyzed proton decay are frequently cited
examples. Also one can generalize the conventional periodic boundary condition of the
statistical models to other types like the fixed and free conditions.

The existence of the boundary adds new quantities like boundary scattering amplitudes
and boundary Boltzmann weights, and one needs to extend the YBE to include these
objects.

The boundary Yang-Baxter equation (BYBE) (also known as the reflection equation)
[1] plays the role of the YBE for the integrable statistical models [2,3] and quantum
field theories [4] in the presence of a boundary; it is the necessary condition for the
integrability of these models. The equation takes the form

Ri(w)Sia(u’ + u) Ry(u) S12 (' — u) = S12(u” — ) Sa(u')Sia (' +u) Ry (u), (1.1)

where R 2y is the boundary scattering (or reflection) matrix in the auxiliary space 1(2)
and S5 is the solution to the YBE. In general, R(#) does not need to be a C-number
matrix, so the equation may be taken as the defining relation for the associative algebra
generated by the symbols R(u) [5]. This algebra possesses a very rich structure and
has been found to be connected with braid groups [6], lattice current algebra [7],
twisted yangian [8] and so on. Taking the quantum space of R(u) to be trivial, the
BYBE is a quadratic matrix equation which allows the matrix R(u) to be solved for
given S(u). To date, several solutions of the BYBE have appeared in the form of
vertex representation, far less is known however for the solution in the solid-on-solid
(SOS) or restricted solid-on-solid (RSOS) representation [9,10]. Also less clear is
the vertex-SOS correspondence associated with this algebra. In particular there is no
rcason to expect the vertex—-SOS transformation for the YBE continue to hold for this
algebra. Therefore, finding a solution in the RSOS form may help to clarify the issue
of the vertex-SOS correspondence. Moreover, the RSOS solution will reveal the special
mathematical structure associated with this algebra when the deformation parameter is
a root of unity.

From a physical point of view, the solutions have applications in statistical mechanics
and field theory. In the context of statistical mechanics, the solutions give rise to inte-
grable SOS/RSOS models with boundaries where the C-number solution of the BYBE
provides the Boltzmann weights of the statistical models at the boundary. The first non-
trivial case gives the tri-critical Ising model. The study of the integrable statistical model
with boundary will shed light on the issue of the dependence of the Casimir energy on
the boundary and surface properties [11,23]. From the field theory point of view, the
solutions are relevant to the study of the restricted sine~-Gordon model [16] and the
perturbed (coset [12,13]) conformal field theory (CFT) [14] with boundary. In this
case, solutions to the BYBE are scattering matrices of the particles with the boundary.

In this paper we construct the BYBE in the RSOS/SOS representation. The equation
is studied for the diagonal and nondiagonal cases, and the most general trigonometric
solutions are found up to an overall factor. This factor is then fixed using the bound-
ary crossing and unitarity conditions [4] (up to the usual CDD ambiguity). We then
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Fig. 1. The bulk RSOS scattering matrix Sgﬁ(u —u).

construct an integrable RSOS/SOS model using the diagonal solution and propose an
algebraic Bethe ansatz method to diagonalize the transfer matrix of the SOS model.

2. Solutions to the boundary Yang-Baxter equation
2.1. Generalities

In this section we solve the BYBE for the RSOS(p); p = 3,4 ... scattering theory.
The RSOS(p) scattering theory is based on a (p —1)-fold degenerate vacuum structure,
of which the vacua can be associated with nodes of the .4,_; Dynkin diagram. The
quasiparticles in the scattering theory are kinks that interpolate neighboring vacua, they
can be denoted by noncommutative symbols K,,(u) where |a — b| = 1 with a,b =
I,....p — 1 and u is related to the kink rapidity @ by u = —if/p, so that the physical
strip is given by 0 < Re u < #/p. In the rest of the paper, we will refer to a,b
as heights or spins. Formally, scattering between two kinks can be represented by the
following equation (see Fig. 1):

Kaa () Kap (') =y S50 — ') Ko (') Kep (), (2.1)

¢

where the S-matrix is given by

—uf2y
il [ ][ {4}
S () = U(u) ([Z][Z]]) W () (2.2)
and
1/2
W (1) = <sinu5,,,, GZ“Z]]) +sin(y — u)5ac> (2.3)

satisfies the YBE in the RSOS representation.
Here [a] denotes the usual g-number given by
sin{ay) T

lal=——"—, y=—
siny p
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Fig. 2. The boundary RSOS scattering matrix R, (u).
and the overall factor /() is a product of Gamma functions satisfying the relations
U)U(—u) sin(y — u) sin(y +u) =1,
U(y —u)=U(u),

and is given by

FG)Fi(y —u)

1 o0
Uy =—T (y/m) I (1 —ufm) I (1= y/m+u/m) [] FI(0)YFi(7)
I=1

I (2y/m—u/m) T (14 2y/7 —u/m)

U= T IT Dy —ufm) T (15 @l Dyjm )

(2.4)

This factor, together with the overall g-number factor, ensures that the S-matrix satisfies
both crossing and unitarity constraints:

Sie (u) = Spg (y — ), (2.5)
Z Sz}ff(”)sf};h(—u) = 6ge. (2.6)

Consider now the above scattering theory in the presence of a boundary denoted
formally by B,, then the scattering between the kink and the boundary is described by
the equation

Kap(6)By = " Rb. (1) Kpe(—u) By, (2.7)

which can be given a graphical representation shown in Fig. 2. Notice that in this
representation, the boundary naturally carries an RSOS spin.

The function R?_ is called the boundary scattering matrix and satisfies the BYBE,
which in the RSOS representation takes the form

> Ry () S5 (1) Ry () S (0 — 1)

a’ b’

=37 s (' — u) Ry (4 Sipbr (4 + 1) Ry (). (2.8)

a’ b’

This equation is illustrated graphically in Fig. 3.
In general, the function RY.(u) can be written as
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Fig. 3. The boundary Yang-Baxter equation.

wna)”m

u. ) =R
pe (10 (”(wnﬂ
X [617¢L-X;;’c(u) + Ope {617,[1+|Ua(u) +5b,a—|Da(u)}] s (2.9)

where R(u) has to be determined from the boundary crossing and unitarity constraints,
while X3, and U,, D, have to be determined from the BYBE. An overall g-number
factor has also been multiplied to the above to cancel that from the bulk S-matrix in
order to simplify the BYBE. If X§ does not vanish, the boundary R-matrix describes
a nondiagonal scattering process, otherwise the scattering is called diagonal. Note that
duc (o the restriction that the vacuum assumes values 1,...,p — 1, Xp., X2 ', Dy, U,
are not defined. The case p = 3 has only diagonal scattering, so Xj,, does not exist.

2.2. Nondiagonal scattering

We consider the scattering where the off-diagonal component X§, is nonvanishing. To
start, consider the case b # ¢ + b" in Eq. (2.8) where the BYBE gives

Xf:—l,{lJrl (uI)XZ;—t]z,zhH(u) = Xz—l.a—O—] (u)Xgilz,cH-fi(ul); (210)
2<a<p—4,

which implies that Xg, | o, can be written as

Xﬁﬁ:l,u:;:l(”) =h:}:(1/l)X§: (2.11)

where h4 (1) depends only on u and X4 only on a.
On the other hand, the case c = b=b",a =d" gives

X taet WX am1 () = X5y g ()Xo (o ()5 (2.12)
2<asp-2
which implies that
ho(u'Yho(u) = hy(uYh_(u'), (2.13)
from which we conclude that

h,(u) =const. x h_(u). (2.14)
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Absorbing the constant in the above equation into XY or X§, we can make s, equal
to fi_ so that we can absorb the A4 (u) into the overall R(u) factor and treat X} as u
independent from now on.

With this simplification, Eq. (2.8) can be broken down into the following independent
equations in addition to the above two equations:

[a]
[a+1]

a+2 -+
+Xa+l u+3X +3, u—{-lf—

=U,Dypa fr (1 +f- a+2])

Uz/lDllw‘2f+ (] + f—

2
)+Dﬂmﬁf( Lﬂ”+]>

+1]

la+ 1]

VU ULf - (1 +f

at1] 1]) + Xa-tar1Xarra-1f- (2.15)

for l <a<p-—3,

1 -1
Dt/,+1.f~ <1+f+[a[:] ]>+Ul W (1+f—[a ]>

la]
=Uy— If+h aHf—q (216)
/ / 2
Ut (15 £y ) + Pl (14 71
= Du+2f+ - af— (2.17)

for2<a<p-3,and

zhﬂ—iﬁﬂ-%+mo+ﬁ»Mh)@+ﬁg@ﬁ)

=D, (1 +f+—Lf]—l]) ( +f- ” —]1]) (2.18)
D‘/’“f*f“LjT]ﬂ Da+Ua (l AP fl]) (l +f*[a[j-]1]>

=, <1 +f+[—a[%]1—]) - D, <1 f [a[i]”) (2.19)

for 2 < a < p — 2. The last four equations are derived based on the assumption that

the off- d]dgonal weight X} is nonvanishing. In the above equations, we used a compact
notation, where U, = U, (u), U}, = U,(«') (similarly for D,) and

fx =sin(u’ +u)/sin(y —u’ Fu).

In addition, it should also be mentioned that the last term in the rhs. (Lhs.) of
Eq. (2.15) is present only when @ # 1(p — 3) and the first terms of Eqs. (2.18) and
(2.19) are allowed only for @ # 2 and a # p — 2, respectively. Let us call these terms
that are not supposed to be there the “unwanted” terms. The way to solve these equations
is to construct some recursion relations for the functions U,, D,, Xgi]'a;, and solve the
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recursion relations subject to the conditions that the above-mentioned “unwanted” terms
are zero. Explicitly, one has

y— 1| r—1
Xo2X30= X025 X071, =0, (2.20)
Up=D, =0. (2.21)

A few comments are in order here. Notice that the coefficients of Uy and D, in
Egs. (2.18), (2.19) are [0] and [p], respectively, which vanish by construction. So
in principle, one needs not impose the above condition, Eq. (2.21), for the recursion
rclations of U,, D,. However, we shall see later that a particular solution of U,, D, is
given by

U,=—-D, =const, x L (2.22)
[a]l’
which cancels the vanishing coefficients at a = 0, p, and renders the unwanted terms
nonvanishing. Therefore, we have to impose Eq. (2.21) on the above solution.

Notice also that most of the above equations do not apply to the case p =4, so we
shall deal with this case separately.

From the above it is clear that Eqs. (2.15)-(2.20) can be divided into two parts;
Egs. (2.17)-(2.19) determine U, and D, while Eqgs. (2.15), (2.20) determine Xj,.
Indecd, comparing Eq. (2.16) with Eq. (2.18) and similarly Eq. (2.17) with Eq. (2.19),
we deduce that

=00 (147 i) = Wa = e s - v, 22
! a] - [a] 7 _
(Ua_Url) <1+f+[ +]]> (Da+2 a+2)f+ +]] +(D” Du)- (224)

Substituting one into another, we get
(Upir = Uain) = (Uy = Uy) _sin((a+ Dy +u' +u)
(U —Uy) — (U, —Us2) sin((a—Dy+u +u)’

(D2 = Day2) = (Dj = D,) _sin((a+ Dy —u' —u)
(D, ~D,) — (D! _5—D,5) sin((a—Dy—u' —u)

(2.25)

(2.26)

and writing the r.h.s., respectively, as

cos (Zu’ + (a+ l)y) —cos Qu+ (a+1)y)
cos (2u'+ (a—1)y) —cos Qu+ (a— Dy)’
cos (21’ — (a+ 1)y) —cos (2u — (a+ 1))
cos (2u' — (a— 1)y) —cos Qu— (a— y)’

it is clear that

Uuia(u) — Uy(u) =cos (2u+ (a+ 1)y) + B,
Dyia(u) = Dy(u) =—cos (2u — (a+ 1)y) + ¢,
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where B!, ¢/, are unknown functions of @ only. Iterating the above, one finds

U, (u) ocsin(2u + ay) + a(u) + B, (2.27)
D, (u) xsin(2u — ay) + y(u) + ¢, (2.28)

where a(u), y(u) are unknown functions of u, and B,, ¢, of a. Furthermore, from
Egs. (2.15)-(2.19), one can establish the following symmetry:

Ua(u) = _Da(_u)7 (2.29)

which reduces the number of unknown functions to two, namely, a(u) and B,. To
determine them, we have to substitute the above expressions for U,, D, back into
Egs. (2.16)-(2.19). Notice, however, that these equations are linear in Ug, Dy, so it
suffices to consider a(u) and B, separately. Doing this amounts to finding special
solutions to Eqgs. (2.16)-(2.19) where U,, D, have only u or a dependence. The
solutions are given by

a(u) =0, B, = const, X ——, (2.30)
sin{ay)
respectively. Imposing Eq. (2.21) on B, one finds
B.=0. (2.31)

In summary, the general nondiagonal solution to the four linear equations is given by

Uy(u) =sin(2u + ay),
D,i(u)y=sin(2u — (a+1)vy), (2.32)
where | <a<p-—2
Having found U, D,, the function Xj,. can be easily obtained from Eq. (2.15), which

can be further simplified with the symmetry properties given in Eq. (2.29) and taking
u' to be —u since Xj, does not depend on the rapidity. This gives

+2 1+2 -
X0t ae3Xarzart — Xaotar1 Xart,a—1 = Dar2(0) Ugra(u) — Do (u) Uy (u).

Substituting U,, D, into the r.h.s. and iterating the equations, we get
) L2
¢{1I~1,u+lX;Il+l,u—] =Sy — sin (07)» (233)

where use has been made of Eq. (2.20) to determine the first term. Since this equation
determines only the product, X4_, .., and XZ, ,_, are determined upto a gauge factor.
These solutions have the property that

U/l—(l(u) = ”“Da(u) ,
p—a - a . (2.34)

p—a—l.p—a+1p—a+l,p—a—1 = Fa—la+1da+la—1"

Next, we consider the BYBE for p = 4. The functions U,, D, and X]23, X%l satisfy the
following equations:
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X2, () X2, () = X35 (u) X3, ('), (2.35)

U, (1 +\/§f~) + D) (l +\/§f+) (1 +\f2f_> =U} + D, (1 +\/§f+>,
(2.36)

D, (1 +\/§f_) + U (1 +\/§f+) (1 +\/§f_) =Dy + U, (1+\ﬁf+).
(2.37)

The functions U, D5 are diagonal scattering components and do not couple to the above
equations and we shall defer to next section for their computation. Here we have used
the compact notation introduced earlier for U,, D,, and written out explicitly the rapidity
dependence of Xj,.. As before, the last two equations have been derived based on the
assumption that X?;, X3, are nonvanishing. From Eq. (2.35), we deduce that

X%;(u) = const, X X%l(u). (2.38)

We are free to take X3, as unity and the above implies that X7; is just a gauge factor,
which we call g.
The rest of the equations can be turned into ordinary differential equations in the limit
i’ — u, giving
(Uz(u) + Dz(u)) tan(2u) + 2 (Up(u) + Da(u)) =0, (2.39)
(U2 (u) = Da(u)) cot(2u) — 2 (Up(u) — D2(u)) =0, (2.40)
which can be integrated to give
U (u) = B/ sin(2u) + C cos(2u), (241)
Dy (u) =B/ sin(2u) — C cos(2u), (2.42)

with B, C as free parameters.
This completes the determination of the nondiagonal solutions of the BYBE.

2.3. Diagonal scattering

For the diagonal scattering, we take
RI(w) = ([b]/1a]) "/YR(u)Bhe [8p.ar1Ua(u) + 8pa1Da(ut) ], (243)
and the BYBE is equivalent to a single equation
Uy i ('Y Dyiy (1) sin(u’ + u) sin(ay — v’ +u)
+D o (W) Dy (1) sin(u’ — u) sinay +u' + u)
= U,_1(u)Dyyr (1) sin(u’ + u) sin(ay +u' — u)
U, (YU, () sin(u’ — u) sin(ay - u' —u), (2.44)

which holds only for 2 < a < p—2. So the functions U,_; and D, cannot be determined
from the BYBE. The above can be recast into
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[cos{ay + 2u)Z (u) —cos(ay — 2u)1{Z (") — 1]
= [cos(ay + 2u ) Z(u') —cos(ay — 2u") [ Z(u) — 1], (2.45)

where
Z(,(Lt) = Da'l (u)/Ua—l (“)

One can easily find that the general solution is

Doy (u) _ sin(£, + u) sin(é, + ay —u)
Uu—l (ll) - Si]’\(fu - u) Sin(fa + ay + u) '

(2.46)

where &, is a free parameter.

Thus for the diagonal solution, there are p — 3 parameters £,. This solution gives
p — | distinct diagonal scattering theories of kinks, each with a specific boundary B,.
Therc is one free parameter &, for each theory, except for the cases of a = 1,p — |
where there is no free parameter.

This solution includes a particular case of p =4 which has been omitted earlier.

Further relations from boundary unitarity and crossing symmetry will be required to
disentangle U, and D41, and determine U and D,_», see later.

2.4. Boundary unitarity and crossing symmetry

The boundary unitarity and crossing symmetry conditions of the scattering matrix
R{.(u) determine to some extent the overall factor R(u). These conditions can be
written as

> R (0O R (—u) =84, (2.47)

> S (u) Ry (by +u) =Ri(3y — ). (2.48)
d

Consider the nondiagonal scattering (p > 4) first. Substituting the expression for Rj.

into the unitarity condition, we get the following:
RDR(—u) [X5yXGp0pxa — Ual) Da(u) | = 1,

where use has been made of the symmetry equation (2.29). Applying the results
Egs. (2.32), (2.33) to the above leads to

R(u)R(—u) (sin®y — 4sin®u + 4sin*u) = 1. (2.49)
While for crossing symmetry condition we get
U(Zu)R(%y+u) sin(y — 2u) =R(1§~y—u) (2.50)

using the relations
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[a+2] [a]
Da+2(7“ ll) [a+ ]] +Url(7~u) [a‘l' ]]
=f(2u) (Ua(ll)—Ua('}’—M)), (25])
[a] [a+2]
Uu('y_ ll) [a+ ]] + Da+2(7_u) [a+ ]]
= fQ2u) (Dyy2(u) — Day2(y — ), (2.52)

which are obtained from Eq. (2.17) in the limit ' — y —u. Here f(u) = sinu/sin(y—
u).

The factor R(u) can be determined from Egs. (2.49), (2.50) up to the usual CDD
ambiguity by separating R(u) = Ro(u)R(u) where Ry satisfies

Ro(u)Ro(—u) =1,
U2u)Ro(3y +u) sin(y — 2u) =Ro(§y — u), (2.53)

whose minimal solution reads
Ro(u) = ———, (2.54)
where F;(1t) has been given in Eq. (2.4). While R; satisfies

Ri(ORi(—u) (sin®y — 4sin’ u +4sinu) =1,

Ri(u) =Ri(y —u) (2.55)
with minimum solution
Ri(u) = 30(3y.wo (3 (7 —y),u) (2.56)
where
) = [Ty —w) [TC=x, 3y — w) TT(x, =3y + ) [T(—x, =5y + w) ’

[T 3 [P (-5 4y)
Ty LG+ @l Dy/m o+ xfm —ufm)
[Tcew =11 r(3+ Q@+ 3)y/m+x/m—ujm)

(2.57)
1=0

For p = 4, the crossing symmetry condition is the same as Eq. (2.50), but unitarity now
requires that

R(u)YR(—u) (g + C?cos?(2u) — B/sin*(2u)) = 1. (2.58)

These equations can again be solved by separation (see [17] for details). It should be
remarked that there are two parameters in this case while there is only one in the higher
p cases.

Next, we consider the diagonal case. For convenience, we set the undefined terms
Up, D), to be zero. Unitarity and crossing symmetries relations give, respectively,
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Ru)R(—u)Up(u) U (—u) =1,
RUWR(—~u)Dyei(u)Dyy(—u) =1 (2.59)
and
Uy — 20)R(y — u) [Ua(y — u) sinysin(ay + 2u)
+ D4 0(y — u)sin(y — 2u) sin ((a + 2)'y)]
=Rw)Uq(u) sin((a+ 1)y),
U(y = 2u)R(y — 1) [Das1(y — u) sinysin ((a+ 1)y — 2u)
+Uq—1 (y — u) sin(y — 2u) sin ((a — 1)y)]
= R(u) D, 1(u) sin(ay) (2.60)
forl <a<p-—2
These equations can be solved separately; we set
R)R(—u) =1,
Uu)R(Fy + u) sin(y — 2u) =R(3y — u), (2.61)

so that R(u) has exactly the same solution as that of Ry(u) considered earlier. While
U,, D, satisfy

U,()Uy(—u) =1, D, (u)Dgy(—u) =1 (2.62)
and
U,(y — u) sinysin(ay + 2u) + D, 2(y — u) sin{y — 2u) sin((a + 2)y)
= U, (u) sin(2u) sin((a+ 1)y),

D, (y—u)sinysin{(a+ 1)y —2u) + U,—1(y — u) sin(y — 2u) sin((a — 1)y)
= D1 (u) sin(2u) sin(ay) (2.63)

for | < a < p — 2. Substituting Eq. (2.46) into the above we get a relation between
U(I(U) (Da(u)) and Uu(}’ - ”) (Da()’ - u));

Ui (u)  sin(2(y —u)) sin(&q — w) sin(§, +ay + u)
Upit (¥ — )~ sin(2u) sin(€, — (y —u)) sin(&q +ay+ (y —u))’
Dypi(w)  sin(2(y — w)) sin(€, + ) sin(§, + ay — u)

= - : . (2.64)
Dy (y —u)  sin(2u) sin(é; + (y —u)) sin(é, +ay — (y —u))

These relations together with Eq. (2.62) give the minimal solutions of U, (u) and D, ()
U, (1) = % sin2(y — u) sin( &, —u) sin(&; +ay +u)o(y,u)
xo-(%w — y,u)cr(lzw — &g u)o( %77' — &y —ay,u), (2.65)
Dot (1) = 3sin2(y — u) sin(£, + u) sin(é, + ay —u)o(y, u)
xa(3m —y,uwyo(dr — &, wyo (37 — &, — ay,u) (2.66)
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for2<a<p—2and

U,,_2(u)=%sin2(7—u)0('y,u)a'(%7r—7,u), (2.67)

Dy (u) =%sin2(7—u)O'(y,u)(r(%w—y,u). (2.68)

To summarize, there are two classes of solutions to the BYBE; diagonal and nondi-
agonal. Unlike the solution in vertex representation, the former is not a special limit of
the latter. In fact, the diagonal solution carries p — 3 free parameters while nondiagonal
has none.

2.5. Comments on the SOS model

We have considered from the start that heights take values from 1 to p — 1, which
is necessary for the bulk-scattering weights to be finite as the parameter 7/y = p is a
positive integer. When 7/ is not a rational number, there is no bounds on the heights
and the corresponding representation is known as solid-on-solid (SOS). The removal of
the heights’ restriction certainly affects the solution of the BYBE.

For the diagonal solution, it is clear that essentially there is no difference between the
SOS and RSOS solution, where the SOS solution is given by Egs. (2.65), (2.66) for
any integer « and the overall factor R(u) is the same as before. Hence there is a free
parameter for each height.

While for the nondiagonal solution, the conditions Egs. (2.20), (2.21) of the recursion
rclations do not apply at all, thus 8, # 0 and the corresponding diagonal weights are
given by

U (1) = ksin(2u + ay) -1 ’
2 2k sin{ay)
ksin(2u — (a+ 1)y) 1
D, = — - , 2.69
1) 2 2ksin((a+ 1)) (2.69)
where k is a free parameter. The off-diagonal weights satisfy
1 ksin(ay) \?

X X« — 2 ¢ 2.70
a—l.a+1a+1.0—1 cOs § (2](81[](61'}’) + 2 ) ( )

and are determined up an additive constant cos? £. So there are two free parameters &, k
in this case. The overall factor Ry is given as before, but Ry (u) now contains all the
information of the boundary conditions and has to satisfy

Ri(OR (—u) (cos? € — (14 k) sin®u + K sinu) = 1,
Ri(u) =Ri(y —u) (2.71)
whose minimum solution is

a(n,w)o(id)

Riu) = cosé

(2.72)

where n, ¥ are related to k, £ via
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cosncoshé‘=~%cos§, cos2n+cosh2ﬁ=l+ﬁ
and o(x,u) has been given before.

Notice that the number of free parameters in the boundary scattering amplitudes of
both vertex (the sine-Gordon model) and SOS representations are the same; two for the
nondiagonal and one for the diagonal cases. This strongly suggests that there can exists
a transformation between the two sets of parameters. Interestingly, R (u) is determined
by the same equations as that of the vertex representation [4] if we identify the &, &
here with those in the vertex representation.

Also intriguing is that restricting SOS to RSOS corresponds to

cos?é  sin’y

cos’ & — o0, k*— oo with 2 ==y (2.73)

3. Commuting transfer matrix

Following the technique proposed in [2] for the vertex model, one can similarly
construct a family of commuting transfer matrices for the RSOS/SOS model with
boundary.

To start, it can be shown that if RY, is a solution to the BYBE in the RSOS/SOS
form then the following combination:

ZS,,“ —uy ) S8 (u + u) YRS (u) (3.1)

also satisfies the BYBE, where S,m (u) is the solution of the bulk YBE given in Eq. (2.2)
and ) is an arbitrary parameter. The proof is essentially the same as the vertex case
given in [2] and we shall not repeat it here.

It is convenient to think of the BYBE as the defining relation of some associative
algebra generated by the symbol Rj . So the solutions given in the previous section
correspond to particular representations of this algebra where the “quantum space”
ts trivial and the auxiliary space is the space of a one-step path P, on a truncated
Bratteli diagram with ab and ac being in- and out-state, respectively. In this context, the
above “decorated” solution then corresponds to a representation whose quantum space is
isomorphic to Py that is formed by the nodes f,b (d, ¢). Clearly, the above construction
can be repeated for an arbitrary number of times (say N + 1) giving a boundary R-
matrix that acts on Py, the collection of N-step paths on a truncated Bratteli diagram.
We shall denote such a solution as Rf, which should be regarded as an operator acting
on Py. Its matrix element is explicitly given by

a
Rbc ( u ) ao,,..,aN;a(’)’ ..... u’Nf

= 8(111&,5/7(/,\1‘5((1N H Z (Si:;i,"]aL U — U )S(MI ; (Ll =+ u; )) Zga,,(u) (32)

i=1 u
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Fig. 4. “Decorated” boundary scattering matrix.

which has the graphical representation given in Fig. 4. It carries N parameters u; from
the bulk S-matrices and additional ones from Rj. To form a commuting transfer matrix

out of R{,, like in the vertex case, one has to combine it with another BYBE solution

(denoted here as ﬁ) as follows:

T(”)do ..... aN;a(/)/ ..... ay = Z R‘clh(u)R‘bl,c(u)an,...,LlN;(t(’)’..N,ax- (33)

a,b,c

Hence the transfer matrix T(u) is again an operator acting on Py.
To show that

[T(uw), T(u")] =0,

one inserts four bulk S-matrices using the unitarity condition

Z 9w+ u)SES(—u' — 1) o 8,
[¢4

and the crossing—unitarity condition
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ZS'”'(M +WSiE(y —u+y —u') o e,

into T(u)T(#'). Then, one uses the BYBE to permute the R’s, and the R’s. Because
of the argument y — u + y — u’ that appears in the crossing-unitarity condition, one can
take

RS, (1) = R.(y —u). (3.4)

4. Diagonalization of the transfer matrix

So far, we managed to obtain solutions to the BYBE and construct the corresponding
commuting transfer matrix. It would be necessary to diagonalize the transfer matrix in
order to study the statistical models given by these solutions. For applications to field
theory, diagonalization of the transfer matrix is also needed in order to write down
the thermodynamic Bethe ansatz equation. For this purpose, a systematic approach
generalizing the algebraic Bethe anatz for the case of the periodic boundary condition
has been devised in [2]. However, the method relies upon the conservation of the
§7 in the vertex language and is thus applicable only to diagonal boundary scattering
theories. Therefore, we shall consider only the diagonal scattering solution and adapt
the algebraic Bethe anatz method devised in [2], along the line of [19], to the SOS
model with boundary. The algebraic Bethe ansatz relies upon the existence of some
pseudo vacuum, which in the vertex model, is a state with either all spins equal to 5
or —5. In the SOS model, such a state corresponds to a path which takes the form of
a 45° oriented straight line in the Bratteli diagram. It is obvious that some heights on
such a path, for lattice size N large enough (> p), have to exceed the bounds 1 or
p — 1. Therefore, this pseudo-vacuum does not belong to the truncated Bratteli diagram
and the algebraic Bethe anatz that we are going to use is applicable to the SOS model
only. For consistency, we have to assume that ¥/ is an irrational number.

To diagonalize the transfer matrix given in Eq. (3.3), we have to first write down the

algebraic relations satisfied by R .. As before, we express the operator Rf, as follows:
— N 7 (uj—u;—1) /2y
[b1[c]\ ™2 {1 (Laf T\
be (1) = Ry () ( ) ‘
: la]lal H [4/]
X (ab#cx;;c(u) + al)c(gh.aJran(u) + ab,a—IDa(u))) f (4.1)

where

N
Ra(u) = R(u) HU(u —u)Uu + ),

i=1

which, along with g-number factors, ensures the boundary crossing and unitarity sym-
metry of Rj . Here X}, U,, D, are now noncommutative operators that satisfy the
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a a a
Fig. 5. Lattice generated by the transfer matrix.

algebraic relations encoded by the BYBE. (see Appendix A) Because I~€jjc is diagonal,
the commuting transfer matrix can be written as

[a //])(Uj—“jﬂ)/z?’

aj]

T(u) =R(y — u)Ry(u) H <

b-1 b+1
X ([ o ]Ub_1(7 —w)Up_;(u) + [[—Z]—]Dbﬂ(y— u)DbH(u)) .

(4.2)

It is important to bear in mind that the RSOS heights ag, aj on the “bottom” boundary
(see Fig. 4) are set to be the same since we consider only diagonal scattering. Let us
denote them as a, while the heights on the other boundary are taken to be b as evident
from the above equation. Hence the statistical model associated with the transfer matrix
is the one defined on a square lattice whose boundary heights are shown in Fig. 5, where
heights denoted by open circles are summed over.

Consider the column of heights in Fig. 4 where a; = a + j and denote this state
as w'tV. By construction, 0"V is an eigenstate of Uyyny—1(1) and Dyyn.g(u) since
the top and bottom heights of U, y_1(#)@%*" and Dyyn41(w) wo*N are a+ N and a
respectively. Furthermore, it is annihilated by Xﬂ%ﬂ“ 4n(1) due to the constraint that
neighboring heights differ by 1. Explicitly,

Uyn—1(u) CUMN = UN(u)w‘HrN
Dyni1 (W)™ =D (u) 0otV
XoTh D an(w i =0, (4.3)

where the eigenvalues are given by



478 C. Ahn, WM. Koo/Nuclear Physics B 468 [FS] (1996) 461-486

N j—1

N
U (uy=> A [T AariC) | Bagj(up) [ ] CareCu) | Dasi(u)

J=1 \i=j+l k=1

N
+H~Aa+_i(uj)Ua~l (),

J=1

N

D) (u) =[] Car (1) Day1 (1) (4.4)
J=1
with
sin((a+ i)y) sin((a +{— 2)y) sin{u — u;) sin(u + ;)
sin?((a+i—1)y)
sin2ysin((a—+-i— Dy+u—u)sin(la+i—Dy+u+u)
sin’((a+i—1)y)
Coyi(ty) =sin(y — u + u;) sin(y — u — u;)

L]

Au*i(”i) =

Boi(u) =

>

and U, (1), Dyy1(u) are given by Egs. (2.65), (2.66).

The slate Xi;ix:;awv(/\)wz*” is nonzero, which corresponds to a column of spins

where the “bottom” and “top” spins have heights a and a + N — 2, respectively. So to

obtain a state whose top spin has height given by b, one has to act on w“*" successively

with M = (N+a—b) /2 operators X{TV =1 | v (A, i=1,..., M. We shall denote
such a state as

P (A = X0 () XN e (A 0T, (4.5)

which is the Bethe anatz state, and the set of parameters A = (A;,...,An) have
to satisfy some consistency condition necessary for ¢2(A) to be an eigenstate of the
transfer matrix. Notice that M is always an integer fixed by the heights a, b and N.
The algebraic relations among X7y, =, U4, Do necessary for our purpose are (see
Appendix A)
Ut )X () = gra (' 1) X35 () Uy (')
+g2a (1, )X (WY Uy ()
+g3a (' )X (U ) Dyy3(u)
+ 840 (' )XEE L () D3 (1),
Dot () XG5 (1) = fra (' )X o (@)D (1)
+f2a(u/s M)XZ—ZLQ (u’)D(H-l (ll)
+ fra (' ) XL () Uasy (), (4.6)

o.ad—
where

sin(ay) sin((a + 1)y) sin(y — u’' + u) sin(2y — u' —u)
sin((a — 1)y) sin((a+ 2)y) sin(y —«' — u) sin(u’ —u)’

/
o, 1) =—
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sinysin((a+ 1)y) sin(ay + #' — u) sin(2y — v’ — u)

sin((a — y) sin({a+ 2)y) sin(y — u' —u) sin(e’ — u)’

sinysin((a + 1)y) sin(ay +u' + u) sin(2y — v’ 4+ u)

824 ( ”l > M) =

g1, u) = Tsin((a— Dy)sin((a+ 2)y) sin(y — & —u) sin(u —u)’
, sinysin(2y) sin(ay + ' +u) sin((a+ D)y + ' —u)

Baalit’su) = sin((a — 1)y) sin((a+ 2)y) sin(y — ' — u) sin(uw’ — u)’
, sin(u' + u) sin(y +u' — u)

Srae' ) = Csin(y — i — u) sin(e’ — u)

o, sinysin(u’ +u) sin((a+2)y —uw +u)
J2a (1) = sin((a+2)y) sin(y —u’ — u) sin(u’ —u)’
Frnil ) = sinysin((a+2)y - u' —u)

sin({a+2)y)sin(y —u' —u)’

The action of the transfer matrix on the state /* (A) can be evaluated by commuting
Uj,—i(u) and Dyy(u) through XZix:t'—l,z:+N+i—l(’\i)' However, the presence of the
g4a (1, 1) term in the first commutation relation complicates matters considerably. Like

the vertex case, it is desirable to define a new operator
Uit () = Uy () + g () D1 () (4.7)
with

sinysin((a — 1)y + 2u)
sin({a — 1)y) sin(y — 2u)’

ho(u) = —

so that the operators INJ‘,_] (u), Dyy1(u) satisfy the simplified relations

Uit ()X (1) = a0, ) X9 () Uy (1)

a,d+

+ang (', ) XEE S (W) Uqyy ()

+a3, (1, )X (1 YDy (n), (4.8)

a.a-+2
D1 ()Xo () = Bra(u', ) XIS () Dy (1)

+182a(ulv L‘)XZ:ZLQ(“,)DLH—I (u)

+Bsa (1, 1) XG4T () Ui (1), (4.9)
where
sin(ay) sin((a+ 1)y) sin(y — v’ + u) sin(2y —u' — u)
sin((a — 1)y) sin((a+ 2)y) sin(y — ' — u) sin(u’ — u)’
sinysin(ay) sin((a+ 1)y +u’ — u) sin(2y — 2u)
sin((a— 1)y)sin((a+ 2)y) sin(y — 2u’) sin(w’ — u)’

siny sin(ay) sin(2u) sin(ay + v’ + u) sin(2y — 2u’)

sin((a — Dy)sin((a+ 1)y) sin(y — v’ —u) sin(y —2u’)’
sin(u’ +u)sin(y+u' —u)
sin(y — ' —u)sin(u’ —u)’

/
ag(u,u) =—

I3
ay, (U, u) =

asy, (1 1) =—

Bralu' u) =—
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sinysin(2u) sin({a+ 1)y — v/ +u)
sin((a+ 1)y) sin(y — 2u) sin(w’ —u)’

sinysin((a+2)y — v —u)
sin((a+2)y)sin(y —u' —u)’

BZtl(u/au) =

B3tl(ul7 M) =

Moreover the eigenvalue IZ’,V (u) of ﬁ[,_l (#) on a)ﬁ’LN is much simplified and given
by

_sin(ay) sin(2u) sin(§a + (a— Dy +u)sin(§a +y — u)

v
Uy () = sin{(a — 1)y) sin(y — 2u) sin(€, + ay + u) sin( &, — u)

N
x [T AwriupUamr (), (4.10)

il
where use has been made of the relation
Buii(ui) + hariC) Cui(ui) = havio1(u) Agyi(u;). (4.11)
Another important relation we need is

b GAPIEND CAESIMUSIED CIAPI(TH) CAE I} B (4.12)

which implies that the Bethe anatz state °(A) is a symmetric function in the A;’s,
which is useful in obtaining the Bethe anatz equation.
It is now straightforward to compute the action of U,_;(u), Dy () on (ﬂé’ (A) giving

Up1 )9} (A)
= a1 (i, A @ipa2(, A2) - ragn—2 (s, MUY ()2 ()
+[azb(u,)\1 Yapa(Ar, Az) . --a1u+N—2()t1,AM)Z/7aN(/\1)
+azp(u, A1) Bip+2(A, A2) -,31a+N—2(M,/\M)D,},V(/\l)]'//é’(k A1)
+...
+ [a2h(”a Amdanpi2(Am, A) oo araen—2(Apr, Ap—i )ZZ’,V()&M)

+aa,(u, Ay ) Brow2(Au, A2) - Brasa—2(Au, /‘M——I)D[},\/(/\M)]#//g(A; Am)
(4.13)

and

Dy ()P (A)
= B1p(tt, A1) Brpsa (i A2) .. Brasn—2 (1, M) DY () (A)
+ [32,,(14, A Bipi2(AL A - Brasn—2(A ) DY (A

+B3p(u, A aipra(Ar, As) . -'aln+N—2(/\l,/\M)Z/N{,iv(/\l)]'//g(AQ Ar)
+...
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N
+ | Bap (s Apt) Bipe2{ A, A2) - - Braen—20Apm, Ap—1) Dy (Ay)

+Bap (1, Asp) @rp2(Apg, A2) - @rgeN—2(Apr, Ap—i )ﬁfum]ﬁu; Am)s
(4.14)

where the state /(’,’(A; A;) is defined as in Eq. (4.5) with A; replaced by u. Combining
the above in the transfer matrix (see Eq. (4.2)),

sin(2y — 2u) sin( &y — u) sin(&p + by +u) Dy (y — u)
sin(y — 2u) sin(&p +y — u)y sin(€p + (b — 1)y + u)
+sin((b — DY)Up1 (y —u)

sin(by)
the state 1//(’1’ (A) is an eigenstate of the transfer matrix if the coefficients of :,[/(’,’(A; AD,
i=1,..., M vanish, which gives the following Bethe anatz equation to be satisfied for
/\,"SI
sin(€, —y 4+ A) sin(€, + (b+ 1)y — ) sin(€, +y — A) sin(éa + (a — D)y + A)
sin(€p — Aj) sin(€p + by + A;) sin(£, + A;) sin(€q + ay — &)
_ ﬁ sin(A; + A;) sin(y + A — A;)
- i sin(2y — A; — Ap) sin{y — A + Aj)

T(u) x

Dy (u)

Uy (u), (4.15)

y ﬁ sin(y — A; + ug) sin(y — Ay — ug)

sin(A; — uy) sin(A; + ug)

k=1
fori=1,...,.M (4.16)

and the eigenvalue A%(u,u; A) of the transfer matrix is given by

AP u; A) =R(y — W) Ry () Up—1 (y — w) Dy (1)
x( sin(2y — 2u) sin(&p, — u) sin(&, + by + u)

sin(y — 2u) sin(&p — y +u) sin(&p + (b + D)y —u)

1“—‘[ sin(u + A sin(y + u — A;)

sin(A; —u) sin(y —u— A;)

i=1
N
X Hsin(y —u+ug) sin(y —u — ug)
k=1
_sin(2u) sin(&, +y —u)sin(é, + (a— Dy +u)
sin(y — 2u) sin( &, + u) sin(&, +ay — u)

o ﬁ sin(u + A; — 2y) sin(y —u + A;)

sin(u — A sin(y —u — A;)

i=

N
stin(u-uk)sin(u+uk)>. (4.17)

k=1
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In the above analysis, &, and &, are, respectively, the free parameters associated with
the boundary R-matrices at the bottom and top boundaries. They need not be related
at all, hence more generally one should write them as &, and &, to distinguish their
origins.

5. Discussion and open problems

In this paper, we present the general trigonometric RSOS/SOS solution to the BYBE.
By comparing them with the corresponding solution in the vertex representation, one
may be able to obtain useful information about the vertex-SOS transformation matrix
for the BYBE [20]. Indeed, for the diagonal solution, in the limit &, — +ico, U,_;
and D,.; are equal so they contribute as an overall factor for the transfer matrix,
since each bulk weight S is invariant under the action of the quantum group U,sl(2)
symmetry (g = e"), the transfer matrix possesses the quantum symmetry. In this limit,
the vertex-SOS transformation [21] is well known and has a precise meaning in terms
of the Clebsch~Gordan coefficients of Usl(2). Thus for generic &, the vertex-SOS
transformation can be considered as an extension of that of the U,sl(2) case.

The SOS/RSOS solutions indicate that the diagonal solution is not a special case of
nondiagonal solution, in particular, there is no way of adjusting the free parameters to
make all the off-diagonal scattering weights Xj,. vanish. The diagonal solution is the
most favorable casc to be studied as we have demonstrated how the transfer matrix of
the SOS lattice built up from this solution may be diagonalized. On the other hand, it
is not obvious how such a method can be applied to the RSOS case. In the limit 7/y
becomes a rational number, solutions to the Bethe anatz equation for the SOS model
should contain those for the RSOS. However, except at the special point where there
is a Ugysl(2) symmetry [22], it is not clear how the RSOS solutions may be extracted.
It would be an interesting challenge to extend the idea to any &,. The RSOS model is
indeed a very interesting case to consider; it has been shown that for a different geometry
where bulk faces are oriented at an angle 45° with respective to the boundaries, the RSOS
boundary condition where all spins have height a corresponds in the continuum limit to
the boundary conformal state |/; ) and that with all boundary spins and their neighbors
have respectively heights a,a + 1 corresponds to |/,,1) [23]. The lattice model that we
considered has a different geometry from that in [23], however, we believe that the
difference is not significant in the scaling limit. Then the former boundary condition
in fact can be obtained as the &, — +ioc limit of the RSOS diagonal solution since
the weights U,_1, D,y become the same. While the latter boundary condition can be
obtained with &, = 1. So for generic &,, the RSOS diagonal solution is in fact a mixture
of the two above-mentioned boundary conditions and it would be interesting to examine
which boundary conformal state it corresponds to in the scaling limit. Similarly, the
nondiagonal solution, which gives to some extent a free boundary-like condition, may
correspond to boundary conformal state |7z,\_,) with r, s # | [24] in the scaling limit.

As a scattering theory, our results should be related to the conformal boundary condi-
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tions of the boundary minimal CFT and perturbations by relevant operators in the bulk
and on the boundary. The nondiagonal solution, which has no free parameter, can be
interpreted as the bulk @3 perturbation of the CFT with free boundary condition where
all possible spins are allowed on the boundary. Additional integrable boundary pertur-
bations introduce CDD-like factor in the scattering amplitudes. Each diagonal solution
describes a perturbed CFT with a fixed boundary condition where the boundary B, has
fixed spin a. The parameter &, in the solution should be related to the coupling constant
of the boundary perturbing field. It is an open problem to relate our solutions to the
specific conformal boundary conditions and boundary perturbations of generic minimal
CFTs. The case p =4 has been analysed in [25].

One can also generalize our results to the coset CFTs SU(2), ® SU(2),;/SU(2) 44
perturbed by the lcast relevant operator in the bulk and by some boundary fields. The
bulk-scattering matrices are given by

S = Srs0S(k+2) © SRSOS (142}

where Srsos(p) is the RSOS S-matrix of the kinks. In this theory, particles carry two sets
of RSOS spins and can be represented as |Kyp) ® |Kypr) [12]. For the BYBE Eq. (2.8)
with the above bulk-scattering matrix, the boundary R-matrix given by

R = Rrsosck+2) @ Rrs0S(1+2)

is a solution, where Rgsos(p) is the R-matrix given in Eq. (2.9). In particular, with
k = 2, this is the N = 1 super CFTs with boundary perturbed by the least relevant
operator and the R-matrix is given by that of the tri-critical Ising model tensored with
that of the RSOS.

To answer some of the questions raised, finding the Bethe anatz equation and diag-
onalizing the transfer matrix for the RSOS case are the essential first step. It is quite
likely that one needs an alternative method such as the functional approach for this
purpose.
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Note added in proof

Aflter completing this work, we learned that some of the results presented in Sections 2,
3 have also been independently obtained in [10] as their trigonometric limit.
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Appendix A

We present here the complete set of algebraic relations satisfied by the operators
X (1), Uy(u), Da(u). These relations are obtained from the BYBE using Eq. (4.1)
for the boundary scattering matrix. Expanding the BYBE equation and considering the

various allowed heights, we get

cra(us)era(u_)U, U, + Cla(u—)XZZE,aX;‘;_]z + c30(’, u)U,_ D),
= C](,(M+)C][,(u_)U;_anml + Cla(”—)X;,a._—zl,(,XZ;l_z + C3a(ul, U)D;.HUa—] s
(A.1)

1 Ta+1 ! 1
C20(4 ) €2 Dy Dy + Co(u_ )XY XK+ ey (!, ) Do U,

/ ‘a+1 1 ’ '
= C2a(u+)c2a(u~ )D”+]Da+l + C2a(u— )Xai’:+zxgiz_a + C3a(u ’ u)Ua_lDﬂ+l s

(A2)
Craf—u ) U UL + 20 f+ (u=)Uu Dy + f—Xg,:zl—ZX::’—_Zl,a
= coaf— (u) Dl Dyt + craf (u_)U,_Dgsy + f-X;‘,"TbXZIQH,
(A.3)
C20f - (U)Da Dy + Craf o (U )Das Uy, + fXEEL X!
= C1af - (U Upy + coafr (u) D), Ugpr + fX0T5X0TD
(A4)
a2 () XX+ U UL = caama(u) X475 X0T)  + U Ul
(A.5)
Clas2 (it XS X5 4 Do Dy = Craa () XX |+ D)y Day,
(A.6)
Xi:—l.u+lX:1a++l?a+3= :fl—l,uHXZﬁ,aH’ (A7)
Xeo D)+ cra(u ) U X5,
= clc,(14_)X:fflTJZDa_1 + cm(u+)c|a(u_)U;_,XZ,;1_2 + C3a(u',M)Df,+1XZ;ll_2,
(A.8)

a+1 / ‘a+l
Xa,a+2Ua+l + C2a(u+ )DH‘H Xa,a+2

= 20 (U)X Uiy + 2 () 20 (u=) D X0, + e i) UL X035,
(A9)
C2a(ut )U““X:z(r;.],a + c2a(ty) c2a(u- )Xziéa :H—l + C3ﬂ(u,’ u)XZi;a zz—l
= UL, X0H , + e2a(w) X D, (A.10)

7 1 —1 —1
Cla(u_ YD, X 575 + craCuy Y era(u) X5, LUy + esq(u, u) X525 Dy

a,0—2 a,a—2
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Y a—1 ‘a—1
= Da—lxa—z‘a + Clzl(”+)Xa_2,aUa~] ,

f+Ud—1Xaé.ltJrr122
= foX 0 Uan + cra(u) f4U, X058, + coa(us) £l XG0

a,a+ a+1“%a,a+2°
‘a—1
f+Da+l Xa,a_z
_ "a—1 ! a—1 ’ a—1
- f—Xa,a—ZDﬂ—l + c2au- )f+Da+1Xa,a—2 + Clﬂ(u+)f—Utl—lX¢1,tl—2’

‘a+] atl 1 a+l 1
f_U"‘HXa+2,u + cra(u-) f+Xu+2,ﬂUﬂ—| + C2a(u+)f—xa+2,aDa+]
_ ‘a+1
- ‘f+Xa+2.gUll*l )

FoDui X+ caalus) f2 X847 Dl + craluy) F-X575 Ul

= f+X:,ll_'2{‘lDzl+lv
where
sinysin(ay — u)
Cralu) = - . ,
sin(ay) sin(y — u)
sinysin(ay + u)
c?.tl(u) = . . b
sin(ay) sin(y — u)
, sin((a — 1)y) sin((a + 1)y) sin(w’ + u) sin(u’ — u)
C}(l(u 9“) = 2 . .
sin“(ay) sin(y — u' — u) sin(y — o’ +u)
: sin(u’ = u)
fo= LW
sin(y —u' F u)
uyr =u' tu.

Here again, we abbreviate

Uu = Ua(u)’
U/ =U,(u')

and similarly for D,, X§ ..

485

(A.1D)

(A.12)

(A.13)

(A.14)

(A.15)

Among them Egs. (A.9), (A.15) are of interest to us, with the help of the latter the
former can be turned into the first equation in Eq. (4.6) which is more convenient for

the algebraic Bethe anatz computation.
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