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small perturbation. We also show that a two-point function on sphere calculated from the

deformed type 0A matrix model is consistent with that of the N = 2 super-Liouville theory

when the N = 1 interaction becomes small. This duality between the matrix model and

super-Liouville theories leads to a conjecture for arbitrary n-point correlation functions of

the N = 1 super-Liouville theory on the sphere.
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1. Introduction

Low dimensional (super-)string theories, minimal conformal field theories (CFTs) coupled

with world sheet quantum (super-)gravity [1] have been actively studied mainly because

they can be toy models useful to test many interesting conjectures which are difficult to

deal with in higher dimensions. Such dualities as holography and open/closed string dual-

ity can be quantitatively confirmed by calculating rigorously various amplitudes from both

the world sheet formulations and their dual matrix models. Another important application

of the (super-)Liouville theories is to investigate black hole physics. One of crucial devel-

opments is that 2D euclidean black hole constructed by a coset CFT SU(2, R)/U(1) [2] is

dual to the sine-Liouville theory [3].

Dual matrix model for the black hole is provided by Kazakov, Kostov, and Kutasov [4].

These authors have investigated the c = 1 matter CFT coupled with the Liouville theory

which is perturbed by the sine-Liouville interaction. When the cosmological constant,

the coefficient of the Liouville interaction, is much bigger than that of the sine-Liouville

interaction, the model is basically the c = 1 string theory and described by conventional

matrix quantum mechanics. The opposite limit in which the sine-Liouville interaction

dominates describes the Witten’s 2D euclidean black hole. The corresponding matrix

model can be constructed by adding vortex operators to the matrix quantum mechanics.
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This conjecture is proved by computing the free energies of both theories directly. The

free energy of the deformed matrix model with infinite number of vortex deformations is

identified with the τ -function of the Toda chain hierarchy. Allowing only the sine-Liouville

perturbation, the hierarchy is simplified to the Toda equation, which can be solved exactly

to find the free energy as a function of the cosmological constant and the coefficient of the

sine-Liouville interaction. The free energy can be expressed in terms of an infinite sum of

correlation functions of the sine-Liouville interaction terms. Using G. Moore’s conjecture

for the correlation functions [5], one can sum up the infinite terms to derive the free energy

which agrees with the matrix model result.

The dual matrix model for the coupled Liouvile theory is further confirmed by Alexan-

drov, Kazakov and Kutasov who computed non-perturbative corrections of both theo-

ries [6]. The free energy of a string theory is given by the genus expansion

Fpert =

∞
∑

g=0

g2g−2
s fg (1.1)

where gs is the string coupling constant and g is the genus of the Riemann surfaces. This

perturbative free energy is corrected by non-perturbative effects which are given as a form

of

Fnon−pert ≈ CgfA
s e−fD/gs . (1.2)

These effects are the exponentiation of the disk partition sum of the D-instanton. To

work out the non-perturbative effects in the Liuoville theory is a difficult task because the

understanding of the D-brane involves the strong coupling effect as gs ∼ exp(Qφ) with

φ representing Liouville direction. This problem was solved by [7, 8] where the extended

(FZZT) and localized (ZZ) branes were found. For the Liouville theory, the leading non-

perturbatve correction is given by the fundamental ZZ-brane and consistent with the matrix

model result.

In this paper we generalize these developments to the supersymmetric theories. The

matrix model for the fermionic black holes has been constructed by adding vortex defor-

mations to the type 0A matrix quantum mechanics [9]. Because the type 0A matrix model

is dual to the ĉ = 1 conformal matter coupled by the N = 1 super-Louville field theory

(SLFT) [10] and the fermionic black hole to the N = 2 SLFT [11], it is natural to conjec-

ture that the deformed type 0A matrix model is dual to the N = 1 super-Louville theory

perturbed by the N = 2 SLFT interaction.

We support our conjecture using many recent developments on the SLFT theories. For

the N = 1 SLFT, the structure constants [12, 13] and boundary one-point functions [14, 15]

have been calculated. Similar results for the N = 2 SLFT have been obtained in [16 –

23]. Using these results, we will calculate the free energy of the coupled SLFT and non-

perturbative corrections due to the D-branes and show that they agree with the deformed

type 0A matrix model results.

This paper is organized as follows: In section 2 we calculate the free energy and non-

perturbative corrections of the deformed type 0A matrix model based on [9]. The N = 1

SLFT perturbed by the N = 2 SLFT interaction is defined in section 3. To compare with
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matrix model results, we compute the non-perturbative corrections based on the boundary

one-point functions of the N = 1 SLFT and a bulk two-point function of the N = 2 SLFT.

We conclude the paper with discussions and open questions in section 4. We provide

necessary formulae of the N = 1 and N = 2 SLFTs in the appendices.

2. Deformed type 0A matrix quantum mechanics

2.1 Perturbative expansion of the free energy

In this section, we set α′ = 1/2. A matrix model of the type 0A string theory in two

dimensions without R-R flux is proposed [10]

S0A =

∫

dt Tr
[

|Dt|2 − |t|2
]

. (2.1)

Here t is an N × N complex matrix and Dt is the covariant derivative. We will consider

the case in which the time direction is compactified on S1 with radius R, so there are two

non-trivial Wilson loops TrΩ, TrΩ̃ for two gauge fields. As in [4], one can deform the type

0A matrix model (2.1) as follows [9]:

S = S0A +
∑

n 6=0

[

λn Tr Ωn + λ̃n Tr Ω̃n
]

. (2.2)

When the parameters are given by

λ±1 = λ̃±1 = λ, λn 6=±1 = λ̃n 6=±1 = 0, (2.3)

this corresponds to a matrix model of Witten’s black hole in type 0A string theory.

When λn = λ̃n, the partition function of the deformed matrix model is factorized as

follows,

Z0A(λ, µ) =

∞
∑

N=0

e2πRµN

∫

DΩDΩ̃Dt e−S

= Z+(λ, µ) · Z−(λ, µ). (2.4)

Moreover, when the condition (2.3) holds, the free energy of each factor defined by F±(λ, µ)

:= log Z±(λ, µ) satisfies the following non-linear differential equation,

1

4
λ−1∂λ(λ∂λF±(λ, µ′)) + exp

[

− sin2(∂µ′F±(λ, µ′)
]

= 1, (2.5)

where µ′ = µ/2. From now on, we will drop the prime.

One can solve this equation at least perturbatively, by using the free energy at λ = 0

F±(λ = 0, µ) = −1

4
Re

∫ ∞

0

dt

t

e−itµ

sinh(t/2) sinh(t/4R)
∓ i

4
Im

∫ ∞

0

dt

t

e−itµ

sinh(t/2) cosh(t/4R)
,

(2.6)

as a boundary condition. For the tree level free energy F±,0(λ, µ) the susceptibility

χ±,0 = ∂2
µF±,0 = − 2R

1 − R
log λ + X±,0(y), (2.7)
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satisfies the following differential equation

(y∂y)
2X±,0(y) + 4(1 − R)2∂2

ye−X±,0(y) = 0, (2.8)

where y = µ/λ1/(1−R). The solution is

y = e−X±,0/2R − (2R − 1)e(1−2R)X±,0/2R. (2.9)

From this we can derive

χ±,0(λ, µ) = −2R log µ + 2R log(1 − s) (2.10)

where
s

(1 − s)2−2R
= (2R − 1)µ2R−2λ2. (2.11)

Notice that this result is the same as that of [4] if we rescale R to 2R.

Eq. (2.10) can be used to expand the susceptibility χ±,0. For the large y (small λ),

the susceptibility becomes

χ±,0(λ, µ) = −2R log µ + 2R
∞
∑

n=1

1

n!
[(1 − 2R)µ2R−2λ2]n

Γ(n(2 − 2R))

Γ(n(1 − 2R) + 1)
. (2.12)

Integrating this twice we obtain the free energy

F±,0(λ, µ) = −Rµ2 log(µ/Λ) + 2Rµ2
∞

∑

n=1

1

n!
[(1 − 2R)µ2R−2λ2]n

Γ(n(2 − 2R) − 2)

Γ(n(1 − 2R) + 1)
. (2.13)

When λ becomes strong, we can take a series expansion of the N = 1 SLFT perturbation

for the underlying N = 2 SLFT. From eq. (2.10) we obtain for 1/2 < R < 1

χ±,0(λ, µ) = − R

1 − R
log

(

(2R − 1)λ2
)

+

+
R

1 − R

∞
∑

n=1

1

n!

[

−µ
(

(2R − 1)λ2
)

1

2−2R

]n Γ
(

n
2−2R

)

Γ
(

n
2−2R − n + 1

) . (2.14)

When R = 1/2 which corresponds to the fermionic black hole, one needs to deal

with eq. (2.13) carefully because the first two terms becomes singular while the expansion

parameter vanishes. A careful calculation leads to [9]

F±,0(λ, µ) = −µ2

2
log µ − µλ2. (2.15)

We will compare these results with those of the N = 2 SLFT in section 3.
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2.2 Non-perturbative corrections

Since the full F±(λ, µ), not only the perturbative contributions, is a solution of (2.5), one

can also derive non-perturbative contributions from the equation. Suppose that the free

energy is of the following form,

F±(λ, µ) = F±,pert(λ, µ) + ε±(λ, µ), (2.16)

where the first term of the RHS contains all perturbative contributions, and non-

perturbative contributions are included in the second term. If we obtained F±,pert(λ, µ),

which is possible in principle, one could obtain ε±(λ, µ) by solving

1

4
λ−1∂λ(λ∂λε±(λ, µ)) = exp

[

−4 sin2
(∂µ

2

)

F±,pert(λ, µ)
]{

1 − exp
[

−4 sin2
(∂µ

2

)

ε±(λ, µ)
]}

.

(2.17)

One may notice from (2.6) that the leading non-perturbative term would behave like

e−2πRµ coming from the imaginary part of F±(λ = 0, µ). This contribution is not physical

since this term would be cancelled in the total free energy F0A(λ, µ) = F+(λ, µ)+F−(λ, µ).

So the physically relevant term would come from the next-leading terms. We denote the

leading non-perturbative term by ε0(λ, µ) and the next-to-leading term by ε1(λ, µ). The

equations one has to solve are now,

1

4
λ−1∂λ(λ∂λε0(λ, µ)) = 4 exp

[

−4 sin2
(∂µ

2

)

F±,pert(λ, µ)
]

sin2
(∂µ

2

)

ε0(λ, µ), (2.18)

1

4
λ−1∂λ(λ∂λε1(λ, µ)) = exp

[

−4 sin2
(∂µ

2

)

F±,pert(λ, µ)
]

×

×
{

4 sin2
(∂µ

2

)

ε1(y, µ) − 8
(

sin2
(∂µ

2

)

ε0(y, µ)
)2}

. (2.19)

In solving (2.18) and (2.19), we use the tree level free energy expression F±,0(λ, µ) for

F±,pert(λ, µ). By making the following ansatz for ε0(λ, µ)

ε0(λ, µ) = P0(y, µ)e−µf(y), (2.20)

one can obtain, from (2.18), the following equation for f(y),

1

2(1 − R)
(1 − y∂y)g(y) = ±e−X(y)/2 sin(∂yg(y)), (2.21)

where g(y) = yf(y)/2 and X(y) ≡ X±,0. We impose the boundary condition f(y) → 2πR

as y → ∞. Then we obtain the solution

f(y) = 2πR ± 4 sin(πR)λµR−1 + · · · , (2.22)

for large µ. Note that R should be less than one in order to obtain F±,pert obeying the

boundary condition.

In deriving (2.19), we assumed that ε1 ∼ (ε0)
2. Therefore ε1(λ, µ) should behave as

ε1(λ, µ) = P1(y, µ)e−2µf(y). (2.23)
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One can show that this assumption is consistent with (2.19). Moreover, one can obtain

both P0(y, µ) and P1(y, µ) perturbatively in terms of 1/µ.These 1/µ corrections arise if we

use the free energy expressions including contributions from higher genera. It is nontrivial

that the relation ε1 ∼ ε2
0, which holds for λ = 0, persists for nonzero λ since the governing

equations for ε0, ε1 are nonlinear.

Now we calculate rm and ρm in the deformed matrix model. The definitions of r, ρ in

the matrix model are

rm =
∂µ log ε1

√

|∂2
µ(F+,0 + F−,0)|

∣

∣

∣

∣

∣

λ=0

, (2.24)

ρm =
∂λ log ε1

√

|∂2
λ(F+,0 + F−,0)|

∣

∣

∣

∣

∣

λ=0

. (2.25)

Corresponding definitions in the Liouville theory are given by

r =
∂µL

Zdisk
√

|∂2
µL

F0|

∣

∣

∣

∣

∣

λ=0

, (2.26)

ρ =
∂λL

Zdisk
√

|∂2
λL

F0|

∣

∣

∣

∣

∣

λL=0

(2.27)

As explained in [6], log ε is the disk partition sum corresponding to the D-instanton. In

the definition of r and ρ, the proportional constants between µ, λ and µL, λL are canceled.

When µL and λL are defined in the next section, we just write them as µ and λ.

From the above results, one can obtain

rm = − 2π
√

R
√

log(Λ/µ)
, (2.28)

ρm = −4 sin(πR), (2.29)

and therefore,

ρm

rm
=

2

π

√

1

R
log

Λ

µ
sin(πR). (2.30)

In order to compare the computations in the Liouville theory where α′ = 2 is used we

simply replace R by R
2 . Thus in this convention

rm = − π
√

2R
√

log(Λ/µ)
, (2.31)

ρm = −4 sin(
πR

2
). (2.32)

and

ρm

rm
=

2

π

√

2

R
log

Λ

µ
sin(

πR

2
). (2.33)

We will confirm these non-perturbative corrections by using the N = 1 SLFT results in

section 3.
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3. Coupled model of the N = 1 and N = 2 SLFTs

3.1 N = 1 SLFT with the winding perturbation

The N = 1 SLFT with additional sine-Lioville type interaction was also considered in [9]

as a N = 1 generalization of the dual relation between the coset CFT SU(2, R)/U(1) of

the euclidean 2D black hole and the Liouville theory with the sine-Liouville interaction. It

is natural to conjecture that the type 0A matrix model considered in the previous section

is dual to the following world sheet action:

S =

∫

d2zd2θ

[

1

2π
(DXD̄X + DΦD̄Φ) + iµebΦ + (iλei R

2
X̃+(1−R

2
)Φ + c.c.)

]

, (3.1)

where c.c. denote complex conjugate while X, X̃ = XL − XR and Φ are real scalar super-

fields

X = x + iθξ + iθ̄ξ̄ + iθθ̄G,

X̃ = x̃ + iθξ − iθ̄ξ̄, x̃ = xL − xR,

Φ = φ + iθψ + iθ̄ψ̄ + iθθ̄F.

In terms of the component fields this action can be written as

S =

∫

d2z(LI + LII), (3.2)

LI =
1

2π
(∂x∂̄x + ξ∂̄ξ + ξ̄∂ξ̄ + ∂φ∂̄φ + ψ∂̄ψ + ψ̄∂ψ̄) + iµψψ̄ebφ, (3.3)

LII = iλ
[

c1ξξ̄ − ic2(ψξ̄ − ξψ̄) + c3ψψ̄
]

ei R
2

x̃+(1−R
2

)φ + c.c. +

+
π

2
(: µebφ + λ

(

1 − R

2

)

ei R
2

x̃+(1−R
2

)φ + c.c. :)2 (3.4)

with

c1 =
R2

4
, c2 =

R

2

(

1 − R

2

)

, c3 =

(

1 − R

2

)2

. (3.5)

Here we have followed conventions in [19] where

α′ = 2, ∂ = (∂x − i∂y)/2, ∂̄ = (∂x + i∂y)/2,

D =
∂

∂θ
+ θ∂, D̄ =

∂

∂θ̄
+ θ̄∂̄,

∫

d2zd2θ =

∫

dxdydθ̄dθ. (3.6)

As pointed out before, we need to rescale R → R/2 for α′ = 2 convention. So the fermionic

black hole described by the matrix model with R = 1/2 corresponds to R = 1 in the SLFT.

When we set λ = 0, the theory is the N = 1 SLFT coupled with ĉ = 1 free CFT where

the background charge term Q∂2φ is given by Q = b + 1
b . The central charge of the N = 1

SLFT is

ĉL = 1 + 2Q2. (3.7)

To cancel the conformal anomaly, we should set b = 1 or Q = 2 so that total central charge

satisfies ĉm + ĉL = 10.

– 7 –
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The bulk (NS) primary fields of the N = 1 SLFT are given by

Vα(z, z) = eαφ (3.8)

with conformal dimension

∆α =
1

2
α(Q − α). (3.9)

The last term in eq. (3.4) is a contact term which can be neglected since it does not

contribute in CFT calculation. It is convenient to define a dimensionless parameter

z =
λ

µ1−R
2

. (3.10)

When z ¿ 1, LII can be considered as a marginal perturbation for 0 < R < 2. In

this region we can compute the effect of the LII interaction on the N = 1 SLFT D-branes

perturbatively. Another interesting region is z À 1 where we should treat the last term in

LI which is the N = 1 SLFT interaction as a perturbation. In particular the LII becomes

the N = 2 SLFT interaction when R = 1 since it can be written as

LII =
iλ

2
ψ−ψ̄−eb̂φ+

+ c.c., (3.11)

by redefining the fields

φ± =
1√
2
(φ ± ix̃), ψ− =

1√
2
(ψ + iξ), ψ̄− =

1√
2
(ψ̄ − iξ̄). (3.12)

Here b̂, the N = 2 SLFT coupling constant, becomes b̂ = 1/
√

2. It is easy to check that

the Q∂2φ term with Q = 2 now acts as the background charge of the N = 2 SLFT. This

means that z À 1 limit of the total theory can be interpreted as N = 2 SLFT perturbed

by the N = 1 SLFT interaction. In particular the action with µ = 0 gives the N = 2 SLFT

which describes the fermionic black hole, the super SU(2, R)/U(1) coset CFT.

3.2 Non-perturbative corrections

Now we compute the non-perturbative corrections in the small λ or small z limit. From

eq. (2.26), the parameter r is given by

r =
∂µZdisk

√

−∂2
µF0

=
iZĉ=1〈ψψ̄eφ〉disk

√

〈ψψ̄eφψψ̄eφ〉sphere

. (3.13)

Here Zĉ=1 is the partition function of the ĉ = 1 matter CFT on the disk with Neumann

boundary condition.

The parameter r is given by a disk one-point function and a bulk two-point function.

These correlation functions have been computed using both conformal and modular boot-

strap methods in [12 – 15]. Since the cosmological constant operator is a superconformal

descendant state of ebφ with b = 1, the correlation functions of this operator are related to

those of ebφ by [14]

〈ψψ̄ebφ〉 = iη
1

b2
〈ebφ〉, 〈ψψ̄ebφψψ̄ebφ〉 = − 1

b4
〈ebφebφ〉. (3.14)

– 8 –
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Here η = ±1 is a discrete parameter in the boundary conditions on the fermion, ψ+iηψ̄ = 0.

The one-point function 〈eαφ〉 is proportional to the boundary wave function for the ZZ-

brane with (1, 1) boundary condition given by

ΨNS
(1,1)(α) = π

[

µπγ

(

bQ

2

)]
1

b
(Q

2
−α) [

(α − Q

2
)Γ(b(

Q

2
− α))Γ(

1

b
(
Q

2
− α))

]−1

. (3.15)

Therefore the one-point function with α = b is given by

〈ebφ〉 = CΨNS
(1,1)(b) = −Cπ

[

µπγ

(

bQ

2

)]
1

2
( 1

b2
−1) [

bΓ(
1

2
(1 − b2))Γ(

1

2
(

1

b2
+ 1))

]−1

(3.16)

where C is a proportional constant between the one-point function and boundary wave

function.

The two-point function on the sphere 〈ebφebφ〉 has been computed in appendix A and

the result is

〈ebφebφ〉 =
b−1

4π

(

1

b2
− 1

)[

µπγ

(

bQ

2

)]
1

b2
−1

γ

(

bQ

2

)

γ

(

1

2

(

1 − 1

b2

))

. (3.17)

As b → 1, the parameter r can be computed from eqs. (3.14), (3.16), and (3.17) as follows:

r = − lim
b→1

Zĉ=1η〈ebφ〉
√

−〈ebφebφ〉
, (3.18)

〈ebφ〉 = −Cπ

[

µπγ

(

bQ

2

)]
1

2
( 1

b2
−1) 1

Γ(1
2(1 − b2))

, (3.19)

〈ebφebφ〉 = − 1

2π

[

µπγ

(

bQ

2

)]
1

b2
−1 1

Γ(1
2 (1 − b2))

. (3.20)

To compute ĉ = 1 partition function Zĉ=1, it is helpful to split this into c = 1 free

boson and c = 1/2 fermion. The free boson part with Neumann boundary condition is

given by Zc=1 =
√

R/2 [6]. The c = 1/2 free fermion system is equivalent to a minimal

CFT for the critical Ising model. Its disk partition function Zc=1/2 is the p = 3 case of

Zr,s =

(

8

p(p + 1)

)
1

4 sin πr
p sin πs

p+1

(sin π
p sin π

p+1)
1

2

, (3.21)

where (r, s) denotes a conformal boundary condition [24]. In this case we choose the Ising

model boundary condition (r, s) = (1, 1), which gives Zc=1/2 = Z1,1 = 1/
√

2. Substituting

these into eq. (3.18), we obtain

r = Cη
π

3

2

√
R

√

2 log Λ
µ

. (3.22)

This result agrees with the matrix model result (2.31) if we can fix the proportional constant

to Cη = − 2√
π
. Since the proportional constant C can be fixed only when it is compared

with the matrix model calculation, it is interesting to check if the same C can be obtained
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for different matrix models. We will comment on this in the conclusion but for now we just

fix the value as it is.

Now let us move on to the next order in λ. We rewrite the N = 2 perturbation

term (3.4) as

T =
LII

2iλ
=

[

c1ξξ̄ − ic2(ψξ̄ − ξψ̄) + c3ψψ̄
]

cos

(

R

2
x̃

)

e(1−R
2

)φ (3.23)

where ci’s are defined in eq. (3.5). From eq. (2.27) the parameter ρ is given by

ρ =
∂λZdisk

√

−∂2
λF0

∣

∣

∣

∣

∣

λ=0

=
i〈T 〉disk

√

〈T T 〉sphere

. (3.24)

The one-point function 〈T 〉 in the numerator can be computed as

〈T 〉 =

〈

cos

(

R

2
x̃

)〉

(

c1

〈

ξξ̄
〉〈

V1−R
2

〉 + c3

〈

ψψ̄V1−R
2

〉)

. (3.25)

Similarly the two-point function 〈T T 〉 in the denominator can be written as

〈T T 〉 =

〈

cos2
(

R

2
x̃

)〉(

− c2
1〈ξξ〉〈ξ̄ξ̄〉

〈

V1−R
2

V1−R
2

〉

+ c2
2〈ξ̄ξ̄〉

〈

ψV1−R
2

ψV1−R
2

〉

+

+ c2
2〈ξξ〉

〈

ψ̄V1−R
2

ψ̄V1−R
2

〉

+ c2
3

〈

ψψ̄V1−R
2

ψψ̄V1−R
2

〉

)

. (3.26)

The one-point function 〈ξξ̄〉 in eq. (3.25) corresponds to that of the energy operator

ε in the Ising model: 〈ε〉 = i〈ξξ̄〉. The boundary states of the Ising model are well-known

and the one-point function 〈ε〉 is η. The correlation functions of the descendant fields are

related to those of the primary field by

〈ψψ̄V1−R
2

〉 = iη
1 + R/2

1 − R/2
〈V1−R

2

〉,

〈ψV1−R
2

ψV1−R
2

〉 =
1 + R/2

1 − R/2
〈V1−R

2

V1−R
2

〉,

〈ψ̄V1−R
2

ψ̄V1−R
2

〉 =
1 + R/2

1 − R/2
〈V1−R

2

V1−R
2

〉,

〈ψψ̄V1−R
2

ψψ̄V1−R
2

〉 = −
(

1 + R/2

1 − R/2

)2

〈V1−R
2

V1−R
2

〉.

Using these relations, ρ can be rewritten as

ρ = −
√

2Bη
〈V1−R

2

〉
√

−〈V1−R
2

V1−R
2

〉
, (3.27)

where B is the one point function of cos(R
2 x̃) on the disk with Neumann boundary con-

ditions, which is known to be the same as Zc=1. The one-point function 〈Vb−R
2

〉 can be

derived from eq. (3.15)

〈Vb−R
2

〉 = −Cπ

[

µπγ

(

bQ

2

)]
1

2
( 1

b2
−1)+ R

2b
[

bΓ(
1

2
(1 − b2) +

bR

2
)Γ(

1

2
(

1

b2
+ 1) +

R

2b
)

]−1

.

(3.28)
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The two-point function 〈Vb−R
2

Vb−R
2

〉 can be computed similarly as before and its deriva-

tion is explained in details in appendix A. The result is

〈Vb−R
2

Vb−R
2

〉 =
b−1

4π

(

1

b2
− 1 +

R

b

) [

µπγ

(

bQ

2

)]
1

b2
−1+ R

b

γ

(

1

2
(1 + b2 − bR)

)

×

×γ

(

1

2

(

1 − 1

b2
− R

b

))

. (3.29)

In the limit b → 1, the one- and two-point functions approach

〈Vb−R
2

〉 = −Cπ

[

µπγ

(

bQ

2

)]
1

2
( 1

b2
−1)+ R

2b 1

Γ(R/2)Γ(1 + R/2)
, (3.30)

〈Vb−R
2

Vb−R
2

〉 = − 1

πR

[

µπγ

(

bQ

2

)]
1

b2
−1+ R

b
(

Γ(1 − R/2)

Γ(R/2)

)2

. (3.31)

Substituting these into (3.27), we obtain

ρ = π3/2Cη
R

Γ(1 + R/2)Γ(1 − R/2)
= 2Cη

√
π sin

πR

2
, (3.32)

and the ratio

ρ

r
=

2

π

√

2

R
log

Λ

µ
sin

πR

2
. (3.33)

which confirms the matrix model result eq. (2.33).

3.3 Two-point functions of the N = 2 SLFT

An interesting check of our conjecture is to compute the free energy in the large λ limit,

eq. (2.15), where the underlying theory is the N = 2 SLFT. In this limit, the free energy

can be expanded as

F0(λ, µ) =
∞
∑

n=0

µn

n!

〈[

i

∫

d2zd2θeΦ

]n 〉

N=2

. (3.34)

Here 〈. . .〉N=2 means that the correlation function is evaluated in the context of the N = 2

SLFT.

It is very difficult to derive general n-point correlation functions. But three-point corre-

lation functions for some special operators are computable as we have listed in appendix B.

We need the following three-point functions of the N = 2 SLFT:

〈eb̂(φ++φ−)eb̂(φ++φ−)ψ−ψ̄−eb̂φ+〉 = 〈eb̂(φ++φ−)eb̂(φ++φ−)ψ+ψ̄+eb̂φ−〉

= λ
2

b̂2
−5 b̂−13

√
2

γ(1 − b̂2)2γ(2 − 1/b̂2)(2b̂2 − 1)2

γ(1 − 2b̂2)
. (3.35)

Integrating these and using the relation (B.5), we obtain

〈ψψ̄eb̂(φ++φ−)ψψ̄eb̂(φ++φ−)〉 = −
√

2

2
ib̂−9(

1

b̂2
− 1)2(2b̂2 − 1)

γ(1 − b̂2)2γ(2 − 1/b̂2)

γ(1 − 2b̂2)
λ

2

b̂2
−4.

(3.36)
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When we fix b̂ = 1/
√

2, the two-point function vanishes.

Noticing that ψψ̄eφ is the N = 1 SLFT interaction, we can expect that the small µ

corrections to the N = 2 SLFT free energy should not have µ2 terms which can be checked

easily in the matrix model result (2.15). In fact, this result shows that general n-point

(n ≥ 2) functions of the N = 1 SLFT interaction terms vanish. But confirming this in the

N = 2 SLFT context is beyond the scope of this paper.

4. Conclusion

In this paper we have proposed a world sheet action corresponding to the deformed type

0A matrix model which describes 2D fermionic black hole. The model is the N = 1 SLFT

perturbed by the N = 2 SLFT interaction. To justify our conjecture, we have computed

the non-perturbative effects arising from the D-instanton for the N = 1 SLFT with N = 2

perturbation and its proposed dual matrix model and have shown the agreement between

the two results. This confirms our conjecture for the N = 1 SLFT side. When the N = 2

SLFT interaction becomes strong, we have calculated the correlation function of two N = 1

SLFT interaction operators and confirmed that both the N = 2 SLFT and the deformed

matrix model agree. Although these calculations are not mathematical proof of the duality

conjecture, we believe that they are enough to justify the validity.

For non-perturbative corrections, we have computed the r parameter which measures

the D-instanton effect of the N = 1 SLFT without the N = 2 SLFT interaction and

the ρ parameter which is the first order N = 2 SLFT perturbation effect. Since the dual

relation between the N = 1 SLFT and the type 0A matrix model is well established [10], we

certainly expect that r should match at both sides. Assuming this, our computation shows

that ρ matches at both sides, which confirms the same D-instanton effect in the perturbed

case. In order to decide the precise value of r we should fix the undetermined quantity Cη

in the computation. This cannot be done solely in the N = 1 SLFT setup. Following the

approach of [6], one can consider the N = 1 SLFT coupled to superminimal models and

decide the similar constant Cη by comparing with the corresponding matrix models and

see if we can get the same Cη for various superminimal models and the ĉ = 1 model. Our

preliminary analysis shows a discrepancy by a factor 2 which we can not explain yet. We

may need a better understanding of the string equation governing superminimal models

and to work out the non-perturbative effects of such theories as in [25]. This in itself is

an interesting topic and we hope we can report the progress elsewhere but is beyond the

scope of the Liouville theory calculation, which is of our main interest in this paper.

If this duality is accepted, one can compare the free energy of the deformed matrix

model (2.13) with the small λ expansion of the SLFT free energy. This leads to a super-

symmetric version of G. Moore’s conjecture for the general n-point correlation functions

on the sphere of the certain N = 1 SLFT operators:

〈

TR
n(T ∗

R)n
〉

0

= 2Rn!µ2
[

(1 − 2R)µR−2
]n Γ(n(2 − 2R) − 2)

Γ(n(1 − 2R) + 1)
(4.1)
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where

TR = i

∫

d2zd2θei R
2

X̃+(1−R
2

)Φ. (4.2)

Due to technical difficulties of the N = 1 SLFT, this conjecture can not be proved by direct

calculations. But this result seems natural because the ordinary Liouville theory and the

N = 1 SLFT share many physical properties like coupling constant duality in common.1
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A. Two-point functions of the N = 1 SLFT

The three-point function of the N = 1 SLFT is given by [14]

−α2
1〈ψψ̄Nα1

Nα2
Nα3

〉 = (A.1)

= i

[

µπγ

(

bQ

2

)

b1−b2
]

Q−
P

αi
b 2Υ′

NS(0)ΥNS(2α1)ΥNS(2α2)ΥNS(2α3)

ΥR(α1+2+3 − Q)ΥR(α1+2−3)ΥR(α2+3−1)ΥR(α3+1−2)
,

where

ΥNS(x) = Υ
(x

2

)

Υ

(

x + Q

2

)

, ΥR(x) = Υ

(

x + b

2

)

Υ

(

x + b−1

2

)

, (A.2)

and Υ(x) satisfies the following formulae

Υ′(0) = Υ(b),

Υ(x + b) = γ(bx)b1−2bxΥ(x),

Υ(x + 1/b) = γ(x/b)b2x/b−1Υ(x).

For α1 = α2 = α3 = b, using the formulae

Υ′
NS(0) =

1

2
ΥR(b),

ΥNS(2b)

ΥR(b)
= γ

(

bQ

2

)

b1−bQ,

ΥNS(2b)

ΥR(2b − 1
b )

= −γ

(

1

2

(

1 − 1

b2

))(

bQ

2
− 1

)2

b−2− 1

b2 ,

we find

−b2〈ψψ̄NbNbNb〉 = −i(µπ)
1

b2
−2

[

γ

(

bQ

2

)]
1

b2

b−5γ

(

1

2

(

1 − 1

b2

))(

bQ

2
− 1

)2

. (A.3)

1After the paper was accepted, we were aware of the work [26] which discusses this question in the

matrix model side.
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Integrating this, we obtain

〈ebφebφ〉 =
b−1

4π

(

1

b2
− 1

) [

µπγ

(

bQ

2

)]
1

b2
−1

γ

(

bQ

2

)

γ

(

1

2

(

1 − 1

b2

))

. (A.4)

For the two-point function 〈Vb−R
2

Vb−R
2

〉, one can integrate a three-point function

〈ψψ̄VbVb−R
2

Vb−R
2

〉. Setting α1 = b, α2 = α3 = b − R
2 in (A.2) and using the formulae

ΥNS(2b − R)

ΥR(b − R)
= γ

(

b

(

Q

2
− R

2

))

b1+bR−bQ,

ΥNS(2b − R)

ΥR(2b − 1
b − R)

= −γ

(

1

2

(

1 − 1

b2
− R

b

))(

b

(

Q

2
− R

2

)

− 1

)2

b−2− 1

b2
−R

b ,

we find

−b2〈ψψ̄VbVb−R
2

Vb−R
2

〉 = −i

[

µπγ

(

bQ

2

)]
1

b2
−2+ R

b

γ

(

bQ

2

)

b−5γ

(

b

(

Q

2
− R

2

))

×

×γ

(

1

2

(

1 − 1

b2
− R

b

))(

b

(

Q

2
− R

2

)

− 1

)2

. (A.5)

Integrating this, we obtain

〈Vb−R
2

Vb−R
2

〉 =
b−1

4π

(

1

b2
− 1 +

R

b

) [

µπγ

(

bQ

2

)]
1

b2
−1+ R

b

γ

(

1

2
(1 + b2 − bR)

)

×

×γ

(

1

2

(

1 − 1

b2
− R

b

))

. (A.6)

B. Two-point functions of the N = 2 SLFT

We consider the vertex operators of the following form

V
j(s,s̄)
m,m̄ = exp

[

√

2

k
(i(m + s)xL + i(m̄ + s̄)xR − jφ) + isHL + is̄HR

]

, (B.1)

where HL,R are bosonized fermions and s, s̄ ∈ Z for the NS sector, s, s̄ ∈ Z + 1
2 for the R

sector. The constant k is related to the N = 2 SLFT coupling constant b̂ by k = b̂2. The

dimensions are given by

∆ = −j(j + 1)

k
+

(m + s)2

k
+

s2

2
, ∆̄ = −j(j + 1)

k
+

(m̄ + s̄)2

k
+

s̄2

2
, (B.2)

and the U(1) charges are given by

ω =
2(m + s)

k
+ s, ω̄ =

2(m̄ + s̄)

k
+ s̄. (B.3)

When s = s̄ = 0, m and m̄ are given by

m =
n + wk

2
, m̄ =

n − wk

2
, (B.4)
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where n and w are momentum and winding numbers respectively.

The two-point function of the operator ψψ̄e
√

2b̂φ = ψψ̄eb̂(φ++φ−) satisfies the following

relation

〈ψψ̄eb̂(φ++φ−)ψψ̄eb̂(φ++φ−)〉 = −
(

1

b̂2
− 1

)2

〈eb̂(φ++φ−)eb̂(φ++φ−)〉. (B.5)

The operator eb̂(φ++φ−) is identified with the vertex operator of the form (B.1): eb̂(φ++φ−) =

V
−k(0,0)
0,0 . The two-point function 〈eb̂(φ++φ−)eb̂(φ++φ−)〉 is computed by integrating the

three-point function 〈eb̂(φ++φ−)eb̂(φ++φ−)ψ−ψ̄−eb̂φ+〉 and 〈eb̂(φ++φ−)eb̂(φ++φ−)ψ+ψ̄+eb̂φ−〉
with respect to −ib̂2λ. The three-point function of N = 2 SLFT is given in [23]. Us-

ing the result there, we find

〈eb̂(φ++φ−)eb̂(φ++φ−)ψ−ψ̄−eb̂φ+〉 = 〈V −k(0,0)
0,0 V

−k(0,0)
0,0 V

−k/2(−1,−1)
k/2+1,k/2+1 〉 = F−D−. (B.6)

The expressions of F− and D− are written in [23] and they are calculated as

F− = − 1

b̂4
γ(1 − b̂2)3,

D− = ν− 5

2
b̂2+1 b̂6b̂2+2/b̂2−6

√
2

Υ(−2b̂ + 1/b̂)2Υ(−b̂ + 1/b̂)

Υ(3b̂ − 1/b̂)Υ(b̂)Υ(2b̂)

= −λ
2

b̂2
−5 b̂−9

√
2

γ(2 − 1/b̂2)(2b̂2 − 1)2

γ(1 − 2b̂2)γ(1 − b̂2)
,

and we obtain

〈eb̂(φ++φ−)eb̂(φ++φ−)ψ−ψ̄−eb̂φ+〉 = λ
2

b̂2
−5 b̂−13

√
2

γ(1 − b̂2)2γ(2 − 1/b̂2)(2b̂2 − 1)2

γ(1 − 2b̂2)
. (B.7)

Similarly we find

〈eb̂(φ++φ−)eb̂(φ++φ−)ψ+ψ̄+eb̂φ−〉 = 〈V −k(0,0)
0,0 V

−k(0,0)
0,0 V

−k/2(1,1)
−k/2−1,−k/2−1〉

= 〈eb̂(φ++φ−)eb̂(φ++φ−)ψ−ψ̄−eb̂φ+〉. (B.8)

Integrating the sum of (B.7) and (B.8), we obtain

〈eb̂(φ++φ−)eb̂(φ++φ−)〉 =

√
2

2
ib̂−9(2b̂2 − 1)

γ(1 − b̂2)2γ(2 − 1/b̂2)

γ(1 − 2b̂2)
λ

2

b̂2
−4

. (B.9)

Substituting in (B.5), we obtain (3.36).
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