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We study the relation between two integrability conditions, namely, the Yang-Baxter and
the pair propagation equations, in 2D lattice models. While the two are equivalent in
the 8-vertex models, discrepancies appear in the 16-vertex models. As explicit examples,
we find the exactly solvable 16-vertex models which do not satisfy the Yang-Baxter
equations.

1. Introduction

In the last two decades, much progress has been made in 2D integrable systems both
in lattice statistical models and in continuum field theories. Recently, this progress
has been associated with beautiful mathematical structures such as the universal
Grassmann manifold,’ the Kac-Moody algebra,? and the quantum group.?

In 2D lattice models, there is one approach which is based on transfer matrices
(TMs) and which has been proved most successful. As Baxter showed, one can
construct infinite number of commuting conserved quantities through these TMs.*
A sufficient condition for the commutativity is that the Boltzmann weights of the
2D lattice models satisfy the famous Yang-Baxter equations (YBEs). There can
obviously exist many exactly solvable models which do not satisfy YBEs. Since
these are exactly solvable, one needs another scheme to solve these models if they
exist.
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There is another approach, which is based on the so-called pair propagation
equations (PPEs) appearing in the analysis of the algebraic Bethe ansatz. Accord-
ing to this method, the Boltzmann weights satisfy nonlinear coupled equations.
These equations become manageable if the Boltzmann weights are defined on some
algebraic curves.

In this paper, we want to study some 2D lattice models which can be exactly
solvable while they do not satisfy YBEs. We are looking for our candidates from
the 16-vertex models.>® What we are going to show first is a relationship between
YBEs and PPEs. Though YBEs and PPEs are equivalent in the 8-vertex model,
discrepancies appear in the 16-vertex models. Since YBEs restrict possible can-
didates so strongly, PPEs can cover more exactly solvable models which do not
satisfy YBEs. We give explicit examples for which we compute exact eigenvalues of
transfer matrices.

2. The Pair Propagation and Conjugate Pair Propagation Equations
We follow the notation of Baxter.* The Boltzmann weights of the symmetric
16-vertex models are given by

R(:{:a +; &+, i) = a, R(:{:a +; iv :F) = ba R(-_-t, i+ :t) =¢, R(iy +; F, :F) - da
R(E, 5 F F)=¢ R(E, & F, &) =k, R(+, & &, F) =h, R(F, & F, F) = 1.

(1
The Yang-Baxter equations are given in the forms
> R(w, G n, BYR (p, o ¢, )R (n, ¢; v, 0)
m¢¢
= D R'( p 0, 9)R($, 5 0, BIR(, o5 v, (). (2)
7.6
According to the Bethe ansatz, eigenfunctions y(51, B2, ..., 8n) of transfer ma-
trices T'(v) for N horizontal sites become in the forms of the direct products of each
variable such as y(B1, B2, ..., Bn) = 91(01) ® g2(B2) ® ... ® gn(Bn). These are

eigenfunctions of transfer matrix on the upper layer. We multiply these eigenfunc-
tions to transfer matrices, and obtain

(T(@)y)a = Te(Gi(an) ... Gr(an)), with (Gi(@))u =Y R(p, a; v, B)g:i(8) .
B

(3)
Explicit forms of G;(x) are

oy _ [agi(+) + hgi(—)  kgi(+) + dgi(—)
i) = (egi(+) +cgi(=)  bgi(+) +1g:(—) ) ’
Gi(—) = (lgi(+) +bg:(—) cgi(+) +egi(-) )

’ dgi(+) + kgi(—) hgi(+) +agi(-) )
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In order to be solved exactly, it is necessary that there exist a-independent pairs of
matrices P;, P;;1, which transform G,(«) into upper triangle forms

1 gi(a) g;"(a)
Pr1Gi(a) Py = Hila) = ( gl @
For simplicity, we choose det P, =1for¢ =1, 2,..., N and we parametrize them

in the forms P, = (glgt; z g+;

Gi(@)Piy1 = PiHi(a) or P 'Gi(e) = Hi@)PL3 . (5)

) Then Eq. (4) is written in the forms

As H;(«a) are in upper triangle forms, we obtain

(o) [ P 1(+H) _ "o pi(+)
Gile) (Pi;(—)) = 9 )<Pi(—)> ’ ©)
(=pi(=), pi(+))Gi(a) = gi' (@) (=Pit1 (=), Pita(+)). (7)

We call Eq. (6) the pair propagation equations (I) and Eq. (7) the conjugate pair
propagation equations (I). By using R(u, «; v, ), the pair propagation equations
(I) are given by

Y R(p, a5 v, B)gi(B)pin(v) = gila)pi(n). (8)

B,v

Explicit forms of these equations are

(agi(+) + hgi(=))pit1(+) + (kgi(+) + dgi(—

Npir(=) = gi(+)p(+),
(1g:(+) + bgi(=))Pi+1(+) + (cgs(+) + egi(-))

pi1(=) = gi(=)pi(+),

(e0:(+) + e =Npera(+) + (bg:(+) + g Dpira(-) = (), )
(dgi(+) + kgi(=))pit1(+) + (hgi(+) + agi(=))pi+1(=) = gi(—)pi(-)
while the conjugate pair propagation equations (I) are given by
> R(g, o v, B)gi(B)ai(n) = g} (0)gita (v) (10)

B, p

where we have used the notation g;(+) = —p;(—), ¢;(—) = p;(+). Explicit forms of
these equations are obtained from Eq. (9) by replacing g;(&) — ¢/ (%), piq1(+) —
=pi(=)y Pit1(=) = pi(+), pi(+) = —pipa(=), pi(=) = pia(+), ¢ < d, and
eo k.

Next we consider the second type of the pair propagation equations, which we
call the pair propagation equations (II). If the models are exactly solvable by using
eigenfunctions ¥(B1, B2, ..., Bn) = g1(51) ® 92(B2) ® - - - @ gn(Bn) acting on the
upper layer of the transfer matrices, they are exactly solvable by using eigenfunction
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glar, az, ..., an) = §i{a1) ® §a(az) ® - ® gn(an) acting on the lower layer.
Similar equations corresponding to Eqs. (3) and (4) are given by

FT@))p = Tr(Gr(Br) - Gn(BN)), with (Gi(B)uw = Y R(p, s v, BGi(a),

(11)
e (8 5"(9)
H—1 5 P 7 _ {9 g;
PGP = i) = (%) B (12)
The pair propagation equations (II) are given by
Y Rp, o5 v, B)fi(@)pin(v) = G(B)B:(w) . (13)

a,v

By the symmetry of the Boltzmann weights, explicit forms of these pair propagation
equations (II) are obtained from the pair propagation equations (I) by replacing
untilde variables by tilde variables and ¢ <+ d, h < [. Similarly we obtain the
conjugate pair propagation equations (II) from Eq. (10) by the same replacement.

Our strategy to solve the pair propagation equations is the following. These pair
propagation and conjugate pair propagation equations are special bilinear equations
of four variables such as g;(£), gi(£), pi(%), and p;y1(£), and it is difficult to solve
these equations directly. Then we first derive nonlinear equations, where only two
ratios of the variables such as r; = p;(—)/p;(+) and r;1 1 = p;y1(—)/piy1(+) appear.
Instead of solving four coupled equations in the pair propagation equations, we first
solve these four nonlinear equations. For each solution of these nonlinear but two
variable equations, only one of the four equations of the pair propagation equations
is independent, and from that we can obtain the eigenvalues of the transfer matrices.

From the condition that there exists nontrivial solutions for ¢;(+) and g}(%) in
Eq. (9), we obtain

r? +rf+1 —I‘l(r?er +1) = Toryripq +Tari(1 +rf+1) +Tyrip (1472) =0, (14)

where
T'1 = (cd — ek)/(ab - Ri),
To=(a®+b%+e2+k%~c?—d? - h?—12)/(ab— hl),
I's = (cl + dh — ak — be) /(ab — Rl),
Ty = (ae + bk — ch — dl)/(ab — hl),

and

i = pi(=)/Pi(+),  Tit1 = piy1(=)/piva(+).

From the condition that there exists nontrivial solutions for p;(£) and p;41 (%),
we obtain

82 457 —Ts(s28? +1) — Tgsis) + Trsi(1 4 82) + Tgsi(1 4+ s2) =0, (15)
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where
= (ed — hl)/(ab — ek),
=(@®+b*+h?+12~c?—d%—e* — k?)/(ab — ek),
= (ce + dk — ah — bl)/(ab — ek),
I‘g = (al + bh — ck — de)/(ab — ek),
and

si=gi(=)/gi(+), si=gi=)/gi(+).

Similarly, from the condition that there exists nontrivial solutions for g;(+) and
pit1(£), we obtain

72 + 82 —To(r2s? + 1) — Tyorys; + Trars(1 + 87) + Tiasi(1 +72) =0, (16)

where
= (bd — eh}/(ac — ki),
Two=(a>+c+e®+h? -0 —d?* —k%*—1?)/(ac— kl),
T11 = (bl + dk — ah — ce)/{ac — ki),
T2 = (ae + ch — bk — dl)/{ac — kl) .

Finally, from the condition that there exists nontrivial solutions for g;(+) and
pi(£), we obtain

822+T?+1—F13(S/2 2+1) I‘14S T1+1+F155 (1+’I",L+1)+F16’I”,,+1(1+S’2) == 0 (17)

where
T3 = (bd — kl}/(ac — eh),

(
Twy=(a?+2+k2+12-62—d%— e~ h?)/(ac — eh),
5 = (be+ dh — ak — cl)/(ac — eh),
T16 = (al + ck — bh — de)/(ac — eh).

We obtain the conjugate pair propagation equations (II} from the pair propa-
gation equations (I} by replacing Dis Dit1, Gi g; — Ps, Di+1, G4, i, that is, by
replacing ratios r;, 7i41, Si, 8, — i, Titr1, &, §;andc e d, h L ExphC1t forms
are given by :

7+ 7:12+1 ~ Ty (7} ~12+1 +1) = Tafifipr + Dafi(1 + 7"1+1) + Dy (L+75) =0, (18)
82+ 52 —Ts(8252 + 1) — [68:8, —Tgdi(145%) —T75;(1+52%) =0. (19)

3. Connection between the Yang-Baxter and the
Pair Propagation Equations

Next we consider the connection between the Yang-Baxter and the pair propaga-
tion equations. We consider products of three R matrices in Eq. (2) as matrices
with row indexed by 8, u, p and with column indexed by «, v, 0. We denote quan-
tities in the left-hand side as A(8, u, p|a, v, o) and those in the right-hand side as
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B(8, u, pla, v, ). To show the relation A(S, p, pla,v, o) = B(B, i, plo, v, o) is
equivalent to show

Z A(B, u, play, v, o)v1(@)ve(v)vs(o) = Z B(8, u, pla, v,o)vi{a)ve(v)vs(o)

(20)
for three arbitrary vectors vy (a)va(v)vs(o). Explicit forms of these equations are
given by

> R(u G n, BYR (o, s ¢, QR (n, ¢ v, o)v1 ()va(v)vs (o)

m¢,d,a,v,0
= Z R”('U‘a P, ¢)R’(¢a Ca g, ﬁ)R(nv Q; VaC)vl (a)v2(y)v3(a) .
0,¢ b (21)

We can transform these by using the pair propagation equations as

(left-hand side) = > R(u, G; n, BR (p, a; ¢, vi()uy(n)us(¢)
¢, ¢

=" R(u, 0, B (Qus(n)ts(p)

¢
=2 (8)z (W (p), (22)
Z R” :U'a P, ¢)Rl(¢7 C7 ag, ﬁ)u (C)U (77)”3( )

7,¢,¢,0

=" R'(u, p; 1, $)t1 (B)ul (n)t5 (9)
7¢

= t1(8)22 (n)25 (p) (23)
Ratios of vectors change in the following way:
(n(H)/ul+) pa)/ai) mal-)/a),
!
2

(left-hand side) : § v2(=)/v2(+ )6’“2( )/u2(+)—>2( )/25(+) (24)
[ v3(= )/v3(+)(I ug(—)/u 3(+) t3(=)/ts(+),

I

(o (=)/u() o () t”( )/H (),

(right-hand side)

(right-hand side) : { v2{=)/vz (+)—)>u2( )/w ”(+)_’Z2( )/ (+) (25)
v (=)/v5(+ ) t”( )/t5(+ )Eza( )/ 25 (+),

where we have used Egs. (I), (II), and (III), which connect in variable X with
out variable Y in the following forms:

() : X2+ Y2 -T5(X2Y?2+1) -Te XY + Y (1 + X2) + T X(1+ Y?2) =0,

(D :X2+Y2-T3(X?Y24+1) —ToXY +I3Y(1+ X2) + T, X(1+Y?) =0,
(D) : X2+ V2 —Ts(X2Y2+1) —TeXY —TgY(1+ X2)-T»X(1+Y?) =0.
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If the forms of Egs. (I) and (II) are the same, Eq. (21) is satisfied. Conditions
that the forms of Eqs. (I) and (II) are the same lead to T; = Ti4(i = 1 — 4). We
call these conditions the candidate conditions to satisfy the Yang-Baxter equations,
because these conditions do not guarantee to satisfy the Yang-Baxter equations but
mean to satisfy three vectors multiplied forms of the Yang—Baxter equations.

In the 16-vertex model case, the above candidate conditions lead to further
restrictions on the Boltzmann weights, that is, we obtain two possibilities: (i) a+d =
b+c, e=h, k=1, and (ii) e = I, k = h. Taking into account of these considerations
to find the candidates, we consider the following exactly solvable cases, which are
the more restricted cases than the above possibilities: (ifa=c, b=d, e=h, k=1,
and (ii)a =d, b=c, e=1, k= h in the next section.

4. Exactly Solvable Cases in 16-Vertex Models

The 16-vertex model has not been solved exactly in the whole regime, and has not
yet been shown to be integrable. .In this situation, it seems to us that the 16-
vertex model will not be integrable in the whole regime. Therefore, we will restrict
ourselves in the following to more specialized cases, to expect to find integrable
cases. Furthermore, since the main point of our paper is to establish the relation
between Yang-Baxter and pair propagation equations, it is our interest to examine
only special integrable cases of the original model in order to demonstrate the
method of Sec. 3 instead of analyzing the whole regime completely.

(a=c b=d, e=h, k=1 case

In this case, we find that the Yang-Baxter equations are satisfied in a sense that
there always exists a nontrivial set {a”, ,b", ,€", k"} for given sets {a, ,b, ,¢, k}
and {a’, .V, ,€, k'}. By explicit calculations, apparent independent Yang—Baxter
equations reduce from 32 — 4 = 28 to 3 in the forms

€"Co —k"Cp =0,
(@” — b")Cp — €"'C =0, (26)
a"Ce —b"Cp =0,

where Cy = ak’ +a'k +be’' +b'e, Cs = ae' +a'e+bk' +b'k, Cs = (a—b)(a’' = V') +
(e —k)e —FK), C,=uaa' +bV +ee' +kk', and C; = ab' + a’b+ ek’ + €'k. Then
for given sets {a, ,b, ,e, k} and {a', ,V', , €', k'}, there always exists a nontrivial set
{a”, 0", ,€"”, K"}, that is, the Yang-Baxter equations are always satisfied.

In this case, Eqs. (14) to (17} give

(r? = 1)(r2; = 1) =0,
2 —
(- (- =0, 2 o
72 + 82 ~Tg(r2s? + 1) — Tyoris; + T [ri(1 4+ 8%) —ss(1 +72)] =0,
522 + 'I‘iz_{_l - F13(3221‘i2+1 + 1) —Tyyris; + F15[52(1 + T‘i2+l) — T‘i+1(1 + 3{52)] =0,
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here
v Ty = (b2 — e?)/(a? — k?),

I'io = 2(a? + €% — b? — k?)/(a® — k?),
Iy = 2(bk — ae)/(a® - k),

I3 = (b — k%) /(a® — &%),

[1s = 2(a? + k? — b2 — €2)/(a? — €?),
I'5 = 2(be — ak)/(a® — €?).

Solutions are the combinations of 7; = s; = %1 and 7441 = s} = £1 (signs are
independent for both). Then we obtain the following cases:

(ia) 3 = $; = Tiq1 = 87 = £1 case

Choosing p; = p;11, the eigenfunctions at this site become

gi(+) ) o no_
;= , g=la+bEt(e+k)lg, g, =0. 28
(ib) 7y = 8; = —7ip1 = —8, = £1 case

Choosing p; = p;+1, the eigenfunctions become

s=( 200) =tz emn (ZE)) w0 )

When we mix these cases, it is necessary to take r;, = ry41 for periodicity, but
otherwise we can mix (ia) and (ib) in such a way that the number of times of
mixing 7; = —7;41 = 1 cases = the number of times of mixing r; = —r;4; = —1
cases. General eigenvalues of transfer matrices give

A=(a+b+e+ k)™ (a+b—e—k)™[(a—0b)? — (e — k)™ (£1)™ (30)

by using non-negative integers mi, mq, and mg, where m; + mo 4+ 2mg = N, and
m1 = 0 or ms = 0 must be satisfied in the case ms = 0.

From explicit expression of transfer matrices at small NV, we obtain A =a+b+
(e+k) for N=1and A = (a+b+e+k)?, (a+b—e—k)?, £(a—b+e—k)(a—b—e+k)
for N = 2, which agree with the above formula.

(ii)a=d, b=c, e=1, k=h case

In this case, the Yang—Baxter equations are not satisfied but transfer matrix com-
mute. We first explain why the Yang-Baxter equations are not satisfied in this case
through the 8-vertex case, because the expression becomes rather complicated in
the 16-vertex case, but the mechanism is the same. Then we consider this special 8-
vertex case, that is,a =d, b=c, e=h =k =1 =0, and the explicit Yang-Baxter
equations give

ab'a’ +aad'a’ = ab'a” + ba't’, (31)
ab’t” + aad'b’ = ba'b” + bbb, (32)
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From Eqgs. (31) and (32), we obtain (a’ +¥')(a” —b") = 0, but as a’ + b’ # 0 because
Boltzmann weights must be positive, and as is in general a” # b", the Yang—Baxter
equations are not satisfied in general. The same mechanism happens in this 16-
vertex case, and as is in general a +d # b+ ¢, e +1 # k + h, the Yang—Baxter
equations are not satisfied in this 16-vertex case.

In this 16-vertex case, Eqgs. (14) to (17) give
(r? — 1)(7"12+1 -1)=0,
(s —1)(s7-1)=0,
(rf —1)(s7 —1) =0,
(3 - 1)(s? —1)=0.

(33)

Then we substitute the solutions of Eq. (33) into the original pair propagation and
conjugate pair propagation equations, and we obtain the following cases:

(iia) r; = r;41 = —8; = —8, = £1 case
Choosing p; = p;y1, the eigenfunctions at this site become

gi(+) ! "
g = » 9:=0, g =la+bF(e+k)gi. 34
g ( ai( )) g g la (e )]g (34)
(iib) r; = —1j41 = 5; = —s} = %1 case

In this case, choosing p; = p;+1, the eigenfunctions at this site become

o= (20N ) gm0 g = ravoxe-mn (£0)) . o)

If we mix these cases, we obtain exactly the same formula Eq. (30). From the
explicit expression of the transfer matrix of small NV, we obtain A =a+b=+ (e + k)
for N=1land A=(a+b+e+k)? (a+b—e—k)?, Lla—b+e~k)a—b—e+k)
for N = 2, which agree with this formula.

5. Summary and Discussion

We have clarified the connection between the Yang—Baxter and the pair propagation
equations in the 16-vertex models. In the 16-vertex models, we find exactly solvable
example of (i) a =¢, b=d, e = h, k =1 case, where the Yang-Baxter equations
are satisfied.

We find another exactly solvable example of (ii) a =d, b=—c, e=1, k=h
case. By explicit calculation, we can find that conditions a +d =b+c¢, e+ 1 =
k + h are necessary to satisfy the Yang—Baxter equations in this case, but these are
not satisfied in general, that is, the Yang-Baxter equations are not the necessary
condition for the solvability. Though the Yang-Baxter equations are not satisfied,
we can show that transfer matrices commute (integrable) for any lattice size NV,
which will be discussed in a separate paper.
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In the 16-vertex models, from these exactly solvable examples, integrable cases
which satisfy the Yang—Baxter equations are rather limited cases in the whole ex-
actly solvable cases. In this sense, the pair propagation equations are more funda-
mental, and even if the Yang-Baxter equations are not satisfied, if the pair propa-
gation equations are solvable, it is sufficient for our purpose to find eigenvalues of
transfer matrices.
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