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Abstract

We study the ultraviolet asymptotics in affine Toda theories. These models are considered as
perturbed non-affine Toda theories. We calculate the reflection amplitudes, which relate different
exponential fields with the same quantum numbers. Using these amplitudes we derive the
quantization condition for the vacuum wave function, describing zero-mode dynamics, and
calculate the UV asymptotics of the effective central charge. These asymptotics are in a good
agreement with thermodynamic Bethe ansatz results. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 11.25.Hf; 11.55.Ds

1. Introduction

Ž .There is a large class of 2D quantum field theories QFTs which can be considered
Ž . w xas perturbed conformal field theories CFTs 1 . These theories are completely defined

if one specifies its CFT data and the relevant operator which plays the role of
Ž .perturbation. The CFT data contain explicit information about ultraviolet UV asymp-

totics of the field theory while its long distance property is the subject of analysis. If a
perturbed CFT contains only massive particles, it is equivalent to the relativistic
scattering theory and is completely defined by specifying the S-matrix. Contrary to CFT
data the S-matrix data exhibit some information about long distance properties of the
theory in an explicit way, while the UV asymptotics have to be derived.

A link between these two kinds of data would provide a good view point for
understanding the general structure of 2D QFTs. In general this problem does not look
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tractable. Whereas the CFT data can be specified in a relatively simple way, the general
S-matrix is very complicated object even in 2D. However, there exists an important class

Ž .of 2D QFTs integrable theories where scattering theory is factorized and S-matrix can
be described in great details.

In this case one can apply the non-perturbative methods based on the S-matrix data.
Ž . w xOne of these methods is thermodynamic Bethe ansatz TBA 2,3 . It gives the

Ž . Ž Ž ..possibility to calculate the ground state energy E R or effective central charge c Reff
Ž .for the system on the circle of size R. At small R the UV asymptotics of c R can beeff

compared with that following from the CFT data.
Usually the UV asymptotics for the effective central charge can be derived from the

Ž .conformal perturbation theory. In this case the corrections to c 0 sc have a formeff CFT

of series in Rg where g is defined by the dimension of perturbing operator. However,
Ž .there is an important class of QFTs where the UV asymptotics of c R is mainlyeff

Ž w x.determined by the zero-mode dynamics see for example 4–7 . In this case the UV
Ž .corrections to c have the form of series in inverse powers of log 1rR . This UVCFT

w xexpansion is also encoded in CFT data 6 .
The simplest integrable QFT with the logarithmic expansion for the effective central

Ž .charge is the sinh-Gordon ShG model, which is an integrable deformation of Liouville
Ž . w xconformal field theory LFT . It was shown in paper 6 that the crucial role in the

description of the zero-mode dynamics in the ShG model is played by the ‘‘reflection
amplitude’’ of the LFT, which determine the asymptotics of the ground state wave

Žfunction in this theory. The reflection amplitudes in CFT define the linear transforma-
tions between different exponential fields, corresponding to the same primary field of

.chiral algebra. The perturbative term in the ShG model restricts the dynamics to the
Ž .interval of size l; log 1rR , which leads to the quantization condition for the momen-

Ž .tum P conjugated to the zero-mode. The solution P R of the quantization condition
determines all logarithmic terms in the UV asymptotics of the effective central charge

Ž . w xc R . The similar approach was used in 7 to describe the UV asymptotics ofeff

Bullough–Dodd and supersymmetric ShG models. In all cases it was found perfect
agreement with TBA results based on the S-matrix data.

In this paper we study the UV behaviour of the effective central charge in affine Toda
Ž .field theories ATFTs associated with simply laced Lie algebras GsADE. The number

of particles in the ATFT is equal to the rank r OF G. For r41 the numerical analysis
of the TBA equations, especially in the UV region, becomes very complicated. The
analytical consideration of the TBA equations permits to calculate only the first term
Ž Ž 2 .. Ž .OO 1rl in the UV expansion for c R which also contains undetermined constantseff
w x8,9 . So it is useful to have the full logarithmic expansion for this function with
explicitly determined coefficients from the CFT data.

In the next section we describe the scattering theory and give the exact relations
between the parameters of the action and spectrum of the ATFT. This QFT can be

Ž .considered as perturbed CFT, namely, perturbed non-affine Toda theory NATT , which
Ž Ž . .possesses non-trivial chiral algebra W G -algebra . We derive the reflection amplitudes

for this CFT. In the weak coupling limit these amplitudes reduce to the coefficients in
the asymptotics of the wave function of the one-dimensional open quantum Toda chain
Ž w x.see for example 10 . This system describes the ‘‘semiclassical’’ limit of the zero-mode
dynamics of the NATT. The relation between the reflection amplitudes and the vacuum
wave function of the NATT is studied in Section 3. In Section 4 we derive the
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quantization condition and calculate the UV asymptotics for the effective central charge
for the ATFT. In Section 5 we compare this asymptotics with numerical data. An
independent derivation of quantization condition for one-dimensional quantum Toda
chain is given in Appendix A.

2. Affine and non-affine Toda theories, normalization factors and reflection ampli-
tudes

The ATFTs corresponding to Lie algebra G is described by the action

r1 22 b e Pw b e Pwi 0AAs d x E w qm e qme , 1Ž .Ž . ÝH m8p is1

where e , is1, . . . ,r are the simple roots of the Lie algebra G of rank r and ye is ai 0

maximal root satisfying

r

e q n e s0. 2Ž .Ý0 i i
is1

Ž .The fields in Eq. 1 are normalized so that at ms0

² : < < 2w x w y syd log xyy . 3Ž . Ž . Ž .a b ab

We will consider later the case of simply laced Lie algebras GsA, D, E.
For real b the spectrum of these ATFTs consists of r particles with the masses mi

Ž .is1, . . . ,r given by

m smn , 4Ž .i i

where

r1
2 2m s m 5Ž .Ý i2h is1

and here h is Coxeter number and n 2 are the eigenvalues of the mass matrixi

r
a ab bM s n e e q e e . 6Ž . Ž . Ž . Ž . Ž .Ýab i i i 0 0

is1

The relation between the parameter m characterizing the spectrum of physical
Ž . Žparticles and parameter m in the action 1 can be obtained by Bethe ansatz method see

w x. w xfor example 11,12 . It can be easily derived from the results of 12 and has the form:

2Ž .2 1qb21 b
mk G G G 1qŽ . 2 2ž / ž /1qb h 1qb hŽ . Ž .

2ypmg 1qb s , 7Ž . Ž .
2 G 1rhŽ .
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Ž . Ž . Ž .where g x sG x rG 1yx and
1r2 hr

nik G s n 8Ž . Ž .Ł iž /
is1

Ž .with n defined in Eq. 2 .i

For the practical applications it is useful to have the relations between the parameter
m and the minimal masses m in A, E and masses m sm in D ATFTs:1 n ny1 n

2 2 2 2 2 2 2A :m s4sin prn m , D :m sm sm s2m ,Ž .ny1 1 n n ny1

2 2 2 2 2'E :m s 3y 3 m , E :m s8sin pr9 m ,Ž .Ž .6 1 7 1

2 2'E :m s8 3 sin pr5 sin pr30 m . 9Ž . Ž . Ž .8 1

w xThe scattering matrix for the particles m in ATFT was constructed in 13,14 . Iti

depends on one parameter

b2

Bs 10Ž .21qb

and is invariant under duality transformation b™1rb or B™1yB. This scattering
matrix is a pure phase:

S u sexp id u , 11Ž . Ž . Ž .Ž .i j i j

where
y1

` dt p Bt p 1yB t p tŽ .
d u s 8sinh sinh 2cosh yI y2dŽ . Hi j i jž / ž /ž /t h h h0 i j

=sin u t ,Ž .
where I is the incident matrix defined by I s2d ye Pe .i j i j i j

The ATFTs can be considered as perturbed CFTs. Without the last term with the
Ž .zeroth root e , the action in Eq. 1 describes the NATT, which is conformal. To0

describe the generator of conformal symmetry we introduce the complex coordinates
zsx q ix and zsx y ix and vector1 2 1 2

1QsQ r , Qsbq1rb , rs a , 12Ž .Ý2
a)0

where the sum in the definition of the Weyl vector r runs over all positive roots a of
G.

The holomorphic stress-energy tensor
21 2T z sy E w qQPE w 13Ž . Ž . Ž .z z2

ensures the local conformal invariance of the NATT with the central charge

csrq12Q2 sr 1qh hq1 Q2 . 14Ž . Ž .Ž .
Besides the conformal invariance the NATT possesses extended symmetry generated

Ž . Ž . Ž .by W G -algebra. The full chiral W G -algebra contains r holomorphic fields W zj
Ž Ž . Ž ..W z sT z with spins j which follows the exponents of Lie algebra G. The explicit2

w xrepresentation of these fields in terms of fields E w can be found in 15 . The primaryz
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Ž .fields F of W G algebra are classified by r eigenvalues w , js1, . . . ,r of thew j
Ž Ž ..operator W the zeroth Fourier component of the current W z :j,0 j

W F sw F , W F s0, n)0. 15Ž .j ,0 w j w j ,n w

The exponential fields

V x seŽQqa.Pw Ž x . 16Ž . Ž .a

are spinless conformal primary fields with dimensions

Q2 a2

D a sw a s y . 17Ž . Ž . Ž .2 2 2
Ž . Ž .The fields in Eq. 16 are also primary fields with respect to all chiral algebra W G

Ž .with the eigenvalues w depending on a. The functions w a which define thej j
Ž .representation of W G -algebra possess the symmetry with respect to the Weyl group WW

w xof Lie algebra G 15 , i.e.

w sa sw a ; sgWW . 18Ž . Ž . Ž .ˆ ˆj j

It means that the fields V for different sgWW are reflection images of each other andˆs aˆ
are related by the linear transformation:

V x sR a V x , 19Ž . Ž . Ž . Ž .a s s aˆ ˆ

Ž .where R a is the ‘‘reflection amplitude’’.ŝ

This function is an important object in CFT and plays a crucial role in the calculation
w x Ž .of one-point functions in perturbed CFT 16 . To calculate the function R a , weŝ

introduce the fields F :w

F x sNy1 a V x , 20Ž . Ž . Ž . Ž .w a

Ž .where normalization factor N a is chosen in the way that field F satisfies thew

conformal normalization condition

1
² :F x F y s . 21Ž . Ž . Ž .w w 4D< <xyy

The normalized fields F are invariant under reflection transformations and hence;w

N aŽ .
R a s . 22Ž . Ž .ŝ N saŽ .ˆ

Ž .For the calculation of the normalization factor N a , we can use the integral representa-
Ž . Ž w x .tion for the correlation functions of the W G -invariant CFT. See 15 for details. We

ˆnote that operators Q defined asi

ˆ 2 b e iPw Ž x .Q sm d xe 23Ž .Hi

Ž .commute with all of the elements of W G -algebra and can be used as screening
operators for the calculation of the correlation functions in the NATT. If parameters a
satisfy the condition

r

2Qq2 aq k e s0 24Ž .Ý i i
is1
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Ž . Ž .with non-negative integer k , we obtain form Eqs. 20 and 21 the following expres-i
Ž . w xsion for the function N a in terms of Coulomb integrals 15 :

r k iQ̂i4D2 < <N a s x V x V 0 , 25Ž . Ž . Ž . Ž .Ła a¦ ;k !is1 i

Ž .where the expectation value in Eq. 25 is taken over the Fock vacuum of massless fields
Ž .w with the correlation functions 3 .

The normalization integral can be calculated and the result has the form:

Ž .2 rP Qqa rb2 2N a s pmg bŽ . Ž .Ž . Ł
a)0

=
G 1qQ rb G 1qQ b G 1qa rb G 1qa bŽ . Ž . Ž . Ž .a a a a

26Ž .
G 1yQ rb G 1yQ b G 1ya rb G 1ya bŽ . Ž . Ž . Ž .a a a a

in terms of the scalar products

Q sQPa , a saPa , 27Ž .a a

where the product runs over all positive roots of Lie algebra G.
Ž . 2Ž .We accept Eq. 26 as the proper analytical continuation of the function N a for all

Ž .a. It gives us the following expression for the reflection amplitude R a :ŝ

N a AŽ . s aˆ
R a s s , 28Ž . Ž .ŝ N sa AŽ .ˆ a

where

rParb2A s pmg b G 1ya rb G 1ya b . 29Ž . Ž . Ž . Ž .Ž . Ła a a
a)0

Ž .The reflection relation Eq. 19 can be written in more symmetric form as:

A V x sA V x , sgWW . 30Ž . Ž . Ž .ˆa a s a s aˆ ˆ

In following we will be interested in the values of functions A for imaginary as iP.a
Ž . Ž .We denote as V P, x sV x andi P

i PPrrb2A P sA s pmg b G 1y iP rb G 1y iP b . 31Ž . Ž . Ž . Ž . Ž .Ž . Łi P a a
a)0

Using these objects we can construct the combination which is invariant under the Weyl
reflections:

C s A sP V sP . 32Ž . Ž . Ž .ˆ ˆÝP
sgWWˆ

3. Reflections of quantum mechanical waves

w xIn this section we follow the LFT analysis 6 to interpret the relation between the
w Ž .xprimary fields of the NATTs and the wave functionals C w x whose asymptotic
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behaviours are described by the wave functions of the zero-modes. The zero-modes of
Ž .the fields w x are defined as:

dx2p 1
w s w x . 33Ž . Ž .H0 2p0

Here we consider the NATT on an infinite plane cylinder of circumference 2p with
coordinate x along the cylinder playing the role of imaginary time. In the asymptotic2

Žregion where the potential terms in the NATT action become negligible e Pw ™y`i 0
.for all i , the fields can be expanded in terms of free field operators an

ia ian nin z yi n zw x sw yPP zyz q e q e , 34Ž . Ž . Ž .Ý0 ž /n nn/0

where PPsyi= is the conjugate momentum of w . In this region any state of thew 00

NATT can be decomposed into a direct product of two parts, namely, a wave function of
the zero-modes and a state in Fock space generated by the operators a . In particular,n

Ž .the wave functional corresponding to the primary state Eq. 32 can be expressed as a
direct product of a wave function of the zero-modes w and Fock vacuum:0

< :C w x ;C w m 0 , 35Ž . Ž . Ž .P P 0

Ž .where the wave function C w in this asymptotic region is a superposition of planeP 0

waves with momenta sP.ˆ
The reflection amplitudes of the NATT defined in the previous section can be

interpreted as those for the wave function of the zero-modes in the presence of potential
walls. This can be understood most clearly in the semiclassical limit b™0 where one

Ž .can neglect the operators a in Eq. 34 even for significant values of the parameter m.n

The full quantum effect can be implemented simply by introducing the exact reflection
w xamplitudes which take into account also non-zero-mode contributions 6 . The resulting

Schrodinger equation is given by¨
rr

2 b e Pwi 0y= qm e C w sE C w 36Ž . Ž . Ž .Ýw P 0 0 P 0012 is1

with the ground state energy

r
2E sy qP . 37Ž .0 12

Here the momentum P is any continuous real vector. The effective central charge can
Ž . 2be obtained from Eq. 37 where P takes the minimal possible value for the perturbed

theory. Since only asymptotic form of the wave function matters, we derive the
reflection amplitudes of the ATFTs in the way that we need only the LFT result.

In the m™0 limit which will be of our interest, the potential vanishes almost
everywhere except for the values of w where some of exponential terms in the0

potential become large enough to overcome the small value of m. In this case, each
exponential term eb e iPw 0 in the interaction represent a wall with e being its normali

vector. If we consider the behaviour of a wave function near a wall normal to e wherei

the effect of other interaction terms becomes negligible, the problem becomes equivalent
Ž .to the LFT in the e direction. The potential becomes flat in the ry1 -dimensionali



[ ] ( )C. Ahn et al.rNuclear Physics B 565 FS 2000 611–628618

orthogonal directions. The asymptotic form of the energy eigenfunction is then given by
Ž .the product of that of Liouville wave function and ry1 -dimensional plane wave,

i P w yi P w i P Pw i PPw i s PPwˆi 0 i i 0 i H 0 0 i 0C; e qS P e e ;e qS P e , 38Ž . Ž . Ž .L i L i

where s denotes the Weyl reflection by the simple root e and P the component of Pî i i
Ž .along e direction. S P is the reflection amplitude of the LFT,i L

G 1q iPb G 1q iPrbŽ . Ž .yi Prb2S P s pmg b . 39Ž . Ž . Ž .Ž .L
G 1y iPb G 1y iPrbŽ . Ž .

Since the wave function interpretation makes sense only in the semiclassical limit, it is
Ž .the b™0 limit of Eq. 39 which can be obtained from the solution of the Schrodinger¨

equation for the LFT.
Ž .We can see from Eq. 38 that the momentum of the reflected wave by the ith wall is

given by the Weyl reflection s acting on the incoming momentum. If we consider theî

reflections from all the potential walls, the wave function in the asymptotic region is a
superposition of the plane waves reflected by potential walls in different ways. The
momenta of these waves form the orbit of the Weyl group WW of the Lie algebra G;

i ŝPPw 0C w , A sP e . 40Ž . Ž . Ž .ˆÝP 0
sgWWˆ

Ž .This is indeed the wave function representation of the primary field 32 in the
asymptotic region.

Ž . Ž .It follows from Eq. 38 that the amplitudes A P satisfy the relations

A s PŽ .î
sS P . 41Ž . Ž .L iA PŽ .

For a general Weyl element s which can be represented by a product of the Weylˆ
elements s associated with the simple roots by sss s . . . s , the above equation canˆ ˆ ˆ ˆ ˆi i i ik ky1 1

be generalized to

A s . . . s Pˆ ˆŽ .i ik 1 sS s PPe S s s PPe . . . S s . . . s PPe . 42Ž .ˆ ˆ ˆ ˆ ˆŽ . Ž . Ž .L i l L i i l L i i l1 2 1 k 1A PŽ .
Ž w x.Using the properties of the Weyl group see for example 17 and the explicit form of

Ž . Ž .the amplitude S P , it is straightforward to verify that the following function A PL
Ž . Ž .satisfies Eqs. 41 and 42 :

i rPPrb2A P s pmg b G 1y iP b G 1y iP rb , 43Ž . Ž . Ž . Ž . Ž .Ž . Ł a a
a)0

Ž .where P saPP is a scalar product with a positive root a . The fact that Eq. 43 isa

Ž .similar to 31 illustrates the relation between the primary fields and zero-modes wave
functions in NATT.

4. Quantization condition and scaling function for ATFT

The analysis of the previous section can be used to obtain the scaling functions in the
deep UV region of the ATFTs defined on a cylinder with circumference R™0. The
additional potential term in the ATFT Lagrangian corresponding to the zeroth root e0

Žintroduces new potential wall in that direction see Fig. 1 as a simplest example, the A2
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Ž . Ž .Fig. 1. a Potential walls in A affine Toda theory. b A wave with momentum P near the zeroth wall comes2

back to the same wall with momentum PX after a series of reflections.

.ATFT . With this addition, the region of w made of the non-affine Toda potential0
Ž .walls Weyl chamber is now closed and the momentum of the wave function should be

quantized depending on the size of the enclosed region. This quantized momentum
Ž .defines the scaling function c in the UV region by Eq. 37 .eff

The quantization condition can be derived using the arguments of Section 3. For the
moment we assume that the circumference of the cylinder is 2p . Consider the path C of

Ža wave which starts with momentum P and comes back after a series of reflections by
. Xother walls to the zeroth potential wall with momentum P . It will then be reflected by

the zeroth wall. Fig. 1b illustrates a multiple reflection in the two-dimensional potential.
To satisfy the self-consistency condition, the momentum PX after the last reflection by
the zeroth wall should be equal to the incoming momentum P so that s PX sP.ˆ0

Furthermore, since the zeroth wall is again Liouville-type, the momenta PX ss P of theˆ0
Ž .incident wave and P of the reflected wave should satisfy Eq. 41 which leads to

A s PŽ .ˆ0
sS PPe . 44Ž . Ž .L 0A PŽ .

On the other hand, since s is given by a product of the Weyl reflections correspondingˆ0

to simple roots, each representing the reflection experienced by the wave along the path
Ž . Ž . Ž .C, the left-hand side of Eq. 44 can be obtained from Eq. 43 . Therefore, Eq. 44

gives a non-trivial quantization condition for the momentum P. This condition can be
generalized using the same arguments for other potential walls instead of the zeroth one.
Then we obtain

A s sPˆ ˆŽ .0
sS sPPe , 45Ž .Ž .ˆL 0A sPŽ .ˆ

where s is an arbitrary Weyl group element.ˆ
Ž . Ž .Using Eq. 43 we can write 45

G sPPs a G sPPeŽ .ˆ ˆ ˆŽ .i PPszrb 0 0ˆ2pmg b s1 , 46Ž . Ž .Ž . Ł
G sPPa G ysPPeŽ . Ž .ˆ ˆa)0 0

where

zss ryrqe sy e Pr e qe sheŽ .ˆ0 0 0 0 0 0
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and we define a function

G P sG 1y iPrb G 1y iPb .Ž . Ž . Ž .
Ž .The G-function factors in Eq. 46 can be further simplified. First, consider the action of

Ž .s on a positive root a : s asaye e Pa , which is either a or aqe if a/yeˆ ˆ0 0 0 0 0 0
Ž . Ž .since ye is the maximal root. In the first case, the factor G sPPs a in Eq. 46 isˆ ˆ0 0

cancelled out by the same factor in the denominator, while, in the second case, there is
no cancellation since aqe is a negative root. Finally, s e sye and the corre-ˆ0 0 0 0

Ž . Ž .sponding factor G sPPe appears twice in Eq. 45 . Using the property e Pas0 or 1ˆ 0 0
Ž . Ž .for a)0 a/ye and e Pe s2, we can simplify Eq. 46 as0 0 0

ys aPseˆ ˆ 0G yPPsaŽ .ˆi h PPse rbˆ 02pmg b s1 . 47Ž . Ž .Ž . Ł
G PPsaŽ .ˆa)0

Ž .Since the Weyl element s is arbitrary, Eq. 47 leads to the following condition forˆ
the lowest energy state

2hQLPs2pry ad P , 48Ž . Ž .Ý a
a)0

where

1
2Lsy log pmg b ,Ž .22 1qbŽ .

and

G 1q iPrb G 1q iPbŽ . Ž .
d P syilog . 49Ž . Ž .

G 1y iPrb G 1y iPbŽ . Ž .
This is the quantization condition for the momentum P in the m™0 limit. We see that
effectively each positive root a causes a phase shift of Liouville type.

Now we consider the system defined on a cylinder with the circumference R. When
Ž .we scale back the size from R to 2p , the parameter m in the action 1 changes to

Ž 2 .2 1qbR
m™m . 50Ž .ž /2p

The m™0 limit is realized as the deep UV limit R™0. The rescaling changes the
Ž .definition of L in Eq. 48 by

R 1
2Lsylog y log pmg b . 51Ž . Ž .22p 2 1qbŽ .

The ground state energy with the circumference R is given by
p ceff 2E R sy with c sry12 P , 52Ž . Ž .eff6R

Ž .where P satisfies Eq. 48 .
Ž .In this limit, Eq. 48 can be solved perturbatively. For this we expand the function

Ž . Ž .d P in Eq. 49 in powers of P,

d P sd b Pqd b P 3 qd b P 5 . . . , 53Ž . Ž . Ž . Ž . Ž .1 3 5
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where
2 3 y3d b sy2Qg , d b s z 3 b qb ,Ž . Ž . Ž . Ž .1 E 3 3

2 5 y5d b sy z 5 b qb . 54Ž . Ž . Ž . Ž .5 5

Using the relation
a b aba a shd ,Ž . Ž .Ý

a)0

we obtain
3 5hlPs2pryd b a P yd b a P y . . . ,Ž . Ž . Ž . Ž .Ý Ý3 a 5 a

a)0 a)0

with
l'2QLqd . 55Ž .1

The above equation can be solved iteratively in powers of 1rl. Inserting the solution
Ž .into Eq. 52 , we find

r hq1Ž .
c sryeff h

=

2 5 72p 24d 2p 24d 2p3 5 y8y D G y D G qOO l ,Ž . Ž . Ž .4 6ž / ž / ž /l 2p l 2p l

56Ž .
Ž .where the coefficients D G are given in terms of a scalar product r srPa bya

1 1
4 6D G s r , D G s r .Ž . Ž .Ý Ý4 a 6 a4 6r hq1 h r hq1 hŽ . Ž .a)0 a)0

Ž . Ž .The values of D G and D G can be evaluated explicitly:4 6

2n2 y3 n2 y2 3n2 y5Ž . Ž . Ž .
D A s , D A s ,Ž . Ž .4 ny1 6 ny12 460n 168n

16n3 y45n2 q27nq8Ž .
D D s ,Ž .4 n 3480 ny1Ž .

48n5 y213n4 q262n3 q6n2 y101ny32Ž .
D D s ,Ž .6 n 5

84 2 ny1Ž .Ž .
r hq1Ž .

D E s ns6,7,8 ,Ž . Ž .4 n 24 rq2 hŽ .
43P73

D E s ,Ž .6 6 48P 12Ž .
514001

D E s ,Ž .6 7 514P 18Ž .
231Ž .

D E s . 57Ž . Ž .6 8 254P 30Ž .
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Ž .Using the relation 7 between the parameter m in the action and the parameter m
Ž .characterizing the spectrum, we can represent the effective central charge 56 for the

simply laced ATFTs in terms of dimensionless value mR. In this form it can be
compared with TBA results.

Ž . Ž .We note that expansion 56 , 57 for D ATFTs can be continued to the half-integern
w xn. The D Toda theories with half-integer ns lq1r2 were studied in 18,19 . Besidesn

the bosonic fields w these models include the Majorana fermion c . The corresponding
Ž . Ž .scattering theory is also self-dual b™1rb . To obtain the values of c R for theseeff

Ž .models we should express c R in terms of parameter mR where m is defined by Eq.eff
ny3
Ž .2 ny1Ž . Ž . Ž .9 and take the continuation for rsn, hs2 ny1 , and k D s2 to then

half-integer ns lq1r2. In particular, for ns3r2 we obtain exactly the expansion for
w xthe supersymmetric ShG model found in 7 .

Example: A ATFT2

As a simplest example, we consider the A ATFT more explicitly. In this case, there2
Ž .are two simple roots e and e , and the affine root e is given by e sy e qe . For1 2 0 0 1 2

each simple root, a Liouville-type potential wall is placed in the normal direction and the
walls form a regular triangle as shown in Fig. 1.

As the coefficient m™0, the size of the triangle becomes large and the zero-mode
dynamics reduces to the quantum mechanical problem in two dimensions surrounded by
a triangular potential wall where the potential vanishes except the vicinity of the walls.
The energy eigenstate of the system is then the standing wave in the triangle which is a
superposition of plane waves with momenta reflected by walls as explained in Section 3.
Since the Weyl group WW of A algebra consists from six elements, WWs2
� 41,s ,s ,s s ,s s ,s s s ss s s ss , the wave function can be written as a sum ofˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 2 1 2 2 1 1 2 1 2 1 2 0

Ž .six plane waves generated by the Weyl reflections as in Eq. 40 with their coefficients
determined by Liouville reflection amplitudes. For example, if one considers the path C
of Fig. 1 followed by a wave with momentum P, one finds

A s P sS PPe A P ,Ž . Ž .Ž .ˆ1 L 1

A s s P sS s PPe A s P sS s PPe S PPe A P ,Ž . Ž .Ž . Ž . Ž .ˆ ˆ ˆ ˆ ˆŽ .2 1 L 1 2 1 L 1 2 L 1

A s s s P sS s s PPe A s s Pˆ ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .Ž .1 2 1 L 2 1 1 2 1

sS s s PPe S s PPe S PPe A P ,Ž . Ž .Ž .ˆ ˆ ˆŽ .L 2 1 1 L 1 2 L 1

Ž .which can be summarized as Eq. 43 .
If the wave is further reflected by the zeroth wall, we have

A s s s s P sS s s s PPe A s s s Pˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .Ž .0 1 2 1 L 1 2 1 0 1 2 1

sS s s s PPe S s s PPe S s PPe S PPe A P .Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆ ˆŽ .Ž .L 1 2 1 0 L 2 1 1 L 1 2 L 1

58Ž .

Ž .Since s ss s s , Eq. 58 gives a quantization condition for P which is the specialˆ ˆ ˆ ˆ0 1 2 1
Ž . Ž .case of Eq. 46 . Simplifying the arguments of S in Eq. 58 , we findL

2
S PPe S PPe S PP e qe s1 ,Ž . Ž . Ž .Ž .L 1 L 2 L 1 2

Ž .which is equivalent to Eq. 47 .
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5. Comparison with the TBA results

A standard approach to study the scaling behaviour of integrable QFTs is to solve the
TBA equations. In this section we compute the scaling functions of the ATFTs in the

Ž .UV region from the TBA equations and compare them with the results in Eq. 56 based
on the reflection amplitudes.

Ž .The TBA equations for the ATFTs are given by is1, . . . ,r
r XduXX Ž .ye uim Rcoshuse u , R q w uyu log 1qe , 59Ž . Ž . Ž . Ž .Ý Hi i i j 2pjs1

where w is the kernel which is equal to the logarithmic derivative of the S-matrixi j
Ž . Ž .S u in Eq. 11i j

d
X

w u syi logS u sd u .Ž . Ž . Ž .i j i j i jdu

Ž .These are r-coupled non-linear integral equations for the ‘pseudo-energies’ e u , Ri

which give the scaling function of the effective central charge
r 3Rmi Ž .ye uic R s coshulog 1qe du . 60Ž . Ž . Ž .Ý Heff 2pis1

It is quite difficult task to solve the TBA equations analytically and compare directly
Ž .with Eq. 56 . To obtain higher order terms in 1rl expansion, one needs to solve

complicated coupled non-linear differential equations. Even the lowest order terms at the
order of 1rl 2 contain constants which can not be decided by the scattering data. While

w xthe method used in 7 may be applicable here, we will concentrate only on numerical
analysis of the TBA equations to avoid any digression to different problem.

Even the numerical analysis is limited if the rank r grows since a large number of
equations amplify the numerical errors entering in the iteration procedure. Therefore we
will consider a few ATFTs with low ranks in each series of A–D–E, namely, A , A ,2 3

Ž .A , D and E ATFTs. The effective central charge c R is computed by solving Eq.4 4 6 eff
Ž .60 iteratively as a function of mR. In order to compare the numerical data with our

Ž .results based on the reflection amplitudes, we fit the numerical data for c R from theeff
Ž .TBA equations for many different values of R with the function 56 where d , d and1 3

Ž .d are considered as the fitting parameters. For this comparison the relation 7 between5

Table1
d ŽRA . vs. d ŽTBA . for A , A , A , D , and E ATFTs1 1 2 3 4 4 6

ŽRA . ŽTBA . ŽTBA . ŽTBA . ŽTBA . ŽTBA .Ž . Ž . Ž . Ž . Ž .d d A d A d A d D d E1 1 2 1 3 1 4 1 4 1 6

0.20 y2.88608 y2.88608 y2.884
0.25 y2.66604 y2.66604 y2.66603 y2.664
0.30 y2.51918 y2.51918 y2.51918 y2.51915 y2.5186
0.35 y2.42035 y2.42035 y2.42035 y2.42035 y2.42033
0.40 y2.35647 y2.35647 y2.35647 y2.35647 y2.35647 y2.3568
0.45 y2.32049 y2.32049 y2.32049 y2.32049 y2.32049 y2.3208
0.50 y2.30886 y2.30886 y2.30886 y2.30886 y2.30886 y2.30886
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Table2
d ŽRA . vs. d ŽTBA . for A , A , A , D , and E ATFTs3 3 2 3 4 4 6

ŽRA . ŽTBA . ŽTBA . ŽTBA . ŽTBA . ŽTBA .Ž . Ž . Ž . Ž . Ž .d d A d A d A d D d E3 3 2 3 3 3 4 3 4 3 6

0.20 6.51114 6.509
0.25 4.31827 4.3180 4.310
0.30 3.08111 3.08100 3.08113 3.06 2.92
0.35 2.34480 2.34473 2.34484 2.3445 2.3438
0.40 1.90842 1.90839 1.90845 1.90845 1.90759 1.93
0.45 1.67590 1.67588 1.67592 1.67592 1.67589 1.69
0.50 1.60274 1.60273 1.60276 1.60276 1.60276 1.6028

the parameter m in the action and parameter m for the particle masses is used. These
Ž .parameters d ’s are then compared with Eq. 54 defined from the reflection amplitudei

of the LFT. Since we already separate out the dependence on the Lie algebra G, our
numerical results for the parameters d ’s should be independent of G.i

Tables 1, 2 and 3 show the values of parameters d ’s obtained numerically from TBAi

equations for different values of the coupling constant B in A , A , A , D and E2 3 4 4 6

ATFTs. We see that they are in excellent agreement with those values of d ’s followingi
Ž .from the reflection amplitudes supplemented with Eq. 7 . Thus numerical TBA analysis

fully supports the validity of our whole scheme based on the reflection amplitude, m–m
relation and the quantization condition on P.

The agreement is relatively poor for d for the cases with high rank such as E partly5 6

due to the numerical errors in higher order calculations. Another reason comes from the
Ž Ž 8. .fact that neglected terms in the 1rl expansion the order of OO 1rl or higher in Eq.

Ž .56 may not be sufficiently small compared with terms with d . However, one can in5

principle reduce these errors by increasing the accuracy of the numerical calculations.
Ž g . Ž .There are also corrections of OO R to the expansion of c R in power series of 1rleff

which increase as B goes to zero. This explains why the discrepancies in the tables
increase as B decreases.

Ž .In Fig. 2, we also plot the scaling functions c R as a function of R settingeff

ms1r2 for different ATFTs; first, using numerical solutions of the TBA equations and,
Ž . Ž .second, using Eqs. 48 and 52 based on the reflection amplitudes. To compare the

Table3
d ŽRA . vs. d ŽTBA . for A , A , A , D , and E ATFTs5 5 2 3 4 4 6

ŽRA . ŽTBA . ŽTBA . ŽTBA . ŽTBA . ŽTBA .Ž . Ž . Ž . Ž . Ž .d d A d A d A d D d E5 5 2 5 3 5 4 5 4 5 6

0.20 y13.2856 y12.7
0.25 y6.49225 y6.38
0.30 y3.49933 y3.45 y3.55 y3.57
0.35 y2.03774 y2.01 y2.07 y1.97 y2.30
0.40 y1.29349 y1.281 y1.31 y1.31 y1.01 y2.5
0.45 y0.93614 y0.929 y0.95 y0.95 y0.94 y2.0
0.50 y0.82954 y0.823 y0.84 y0.84 y0.84 y0.87
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Fig. 2. Plot of c for A , A , A , D , A , and E ATFTs at Bs0.5.eff 2 3 4 4 6 6

same objects, we added to the second case the contribution from the bulk vacuum
w xenergy term 12,20

2 23m R sin prhŽ .
Dc s 61Ž .eff 2p sin p Brh sin p 1yB rhŽ . Ž .Ž .

which becomes significant for R00.01. For each model, the two curves are almost
Ž .identical without any noticeable difference in the graphs even up to R;OO 1 .

6. Concluding remarks

In the main part of this paper we considered the UV asymptotics of the ground state
energy in ATFTs. The main objects which were used for this analysis were the reflection

Ž .amplitudes 28 of NATTs. As it was mentioned in Section 2 these objects also play a
crucial role in the calculation of the one-point functions in perturbed CFT. The one point
functions of the exponential fields

² :GGs exp aPf 62Ž .
Ž .in ATFTs can be reconstructed from the reflection amplitudes 28 . It follows from the

w xresults of the paper 17 that these functions satisfy to the functional equations similar to
Ž .the relations 19,30 . For the ADE series of ATFTs these functions were calculated in

w x23 and have the form:
2ya2 2 2mk G G 1r 1qb h G 1qb r h 1qbŽ . Ž . Ž .Ž . Ž .

GG a sŽ . ž /2 G 1rhŽ .

=
dt

2 y2 texp a e yC t sinh ba t sinh b a y2QŽ . Ž . Ž .ŽŽÝH a a at
a)0

2qh 1qb t , 63Ž . Ž .. .
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where

sinh 1qb2 tŽ .Ž .
C t s 64Ž . Ž .2 2sinh t sinh b t sinh 1qb htŽ . Ž . Ž .Ž .
Ž . Ž . Ž .and k G , a , Q are defined by Eqs. 8 , 27 .a a

We suppose to discuss the application of these functions to the analysis of ATFTs
and related perturbed CFT in another publication.

In the previous sections we studied the UV asymptotics for the simply laced ATFTs.
It looks interesting to extend the consideration to the case of dual pairs of non-simply

Ž .laced ATFTs. To do this it is necessary to generalize the quantization condition 48 and
Ž .the relations 7 between the parameters of the action and masses of the particles. The

work in this direction is in progress.
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Appendix A. A quantum Toda chainn – 1

In this appendix we obtain the quantization conditions for one-dimensional Any1

quantum Toda chain using the approach based on the integrability on this theory. The
Ž .quantum Toda chain corresponds to the semiclassical b™0 approach to the zero-mode

dynamics of the ATFT, however, the structure of quantization condition for this system
Ž .is similar to Eq. 48 .

The quantum Toda chain is described by the Hamiltonian
n n

1 2 2 bŽq yq .i iq1Hs p qk e , A.1Ž .Ý Ýi2
is1 is1

Ž .where q 'q . The model A.1 is integrable. The diagonalization of the Hamiltoniannq1 1
w xwas done in a remarkable paper by Sklyanin 21,22 who used the quantum inverse

Ž .scattering method to obtain the Bethe ansatz BA equations for the eigenvalues of H.
Here we show that for k<1 these BA equations can be represented in the form similar

Ž .to Eq. 48 .
Ž .The Lax operator for Toda chain A.1 has the form

uyp yk eb qi
iL u s . A.2Ž . Ž .i yb qž /ik e 0

Ž .The commuting family of the transfer matrices T u corresponding to the Lax operator
Ž .Eq. A.2 can be written as

XT u sTr L u . . . L u , T u ,T u s0. A.3Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 n
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Ž .The operators T u is a polynomial of degree n with the coefficients

T u sun qT uny1 qT uny2 q . . . , A.4Ž . Ž .1 2

where T syÝn p sP and T syHqP 2r2. The BA equations for the eigenvalues1 is1 i 2
Ž . Ž . Ž .t u of the operator T u can be formulated in terms of eigenvalues Q u of Baxter’s

w x w xQ-operator 23 . Namely, these equations have the form 21,22

t u Q u sk n i nQ uq ib q iyn Q uy ib , A.5Ž . Ž . Ž . Ž . Ž .Ž .
Ž .where t u is a polynomial of u, which can be written as

n n n
2t u s uyÕ , with Ps Õ , Es Õ r2, A.6Ž . Ž . Ž .Ł Ý Ýi i i

is1 is1 is1

Ž .and Q u is an entire function of u.
Ž .With these two conditions Eq. A.5 is rather complicated to be solved analytically.

Even for ns2 it can be only reduced to the Mathieu equation. Here we consider the
Ž . Ž n.approximate solution of Eq. A.5 with accuracy OO k . Namely, we impose the

Ž .condition that function Q u is a meromorphic function with the absolute values of
Ž n.residues at the poles OO k .

Ž . Ž .The function Q u with this analyticity property which satisfies to Eq. A.5 with
Ž n.accuracy OO k can be written in the form

niunlogk i Õ yuŽ .i
Q u sexp GŽ . Łž / ž /b bis1

niunlogk i uyÕŽ .i
qexp y G . A.7Ž .Łž / ž /b bis1

Ž . Ž .The function Q u has the poles at real usÕ with the residues OO 1 and the poles ini
Ž n.the complex plane with the residues OO k . To satisfy the analyticity condition we

should cancel the poles at usÕ . In this way we arrive at the following equations forj

parameters Õ :j

i Õ yÕŽ .i j
G 1qž /2 inÕ logk bj ny1exp s y1 A.8Ž . Ž .Łž / i Õ yÕŽ .b i ji/j
G 1yž /b

or taking the logarithm on both sides,

i Õ yÕŽ .i j
G 1qž /2nÕ logk 1 bj

y s log qp I , A.9Ž .Ý ji Õ yÕŽ .b i i ji/j
G 1yž /b

Ž . Ž .where I is the set of different integers, odd even for even odd n.j

The minimal set of numbers I corresponding to the ground state with center of massj

momentum Ps0 can be written as:

I s2 jyny1, js1, . . . ,n. A.10Ž .j
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Ž . Ž .One can easily see that with this set of numbers I Eq. A.9 is similar to Eq. 48 whichj
Ž .has additional term Dw Õ in the r.h.s.:j

1 G 1q i Õ yÕ bŽ .Ž .i j
Dw Õ s logŽ . Ýj i G 1y i Õ yÕ bŽ .Ž .i ji/j

coming from the quantum renormalization of reflection amplitudes in the two-dimen-
sional NATT.
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