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We study integrable perturbations of the coset CFTs. The models are characterized by two
fractional supersymmetries that are dual to each other. Generally, these models can be
considered as restrictions of new integrable field theories we call fractional super soliton field
theories. We study the connections with other models such as perturbations of WZW models,
super sine-Gordon theory, Gross—Neveu models, and principal chiral models.

1. Introduction

In the short-distance limit of a (1 + 1)-dimensional quantum field theory (QFT),
the mass scale of the model becomes irrelevant, and the theory is governed by a
conformally invariant quantum field theory (CFT) [1]. More generally, CFT de-
scribes the behavior of QFT at a renormalization-group fixed point. Thus the
classification of CFT provides a classification of all possible types of short distance
structure. Given a conformal field theory, there is no unique massive theory with
this prescribed behavior at short distances. However, an interesting problem is
formulated by requiring the massive theory to be integrable. One can contemplate
classifying integrable QFT via their short-distance structure. As we will see, this is
a rather fruitful point of view, as it will lead to many new classes of integrable
QFT.

It has been conjectured that all rational CFTs can be realized through a coset
construction of Wess—Zumino—Witten (WZW) models and orbifolds. Denote the
level-K WZW model for the simple Lie algebra G as G,. We will only consider
the coset CFTs of the form G ® G; /Gy, ;. Our aim is to associate an integrable
QFT to each such coset.

There are primarily two approaches to the stated problem. One method,
initiated by Zamolodchikov [2] is to consider CFT perturbed by certain relevant
operators. For some choices of the perturbing operator, it can be demonstrated
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that there are some additional nontrivial integer spin conserved currents, and this
is taken to be a sign that the perturbed theory is integrable. The other method is to
begin with a QFT that is known to be integrable, and from it to obtain new
theories by a special restriction of the Hilbert space that preserves the integrability
[3-7]. The restriction is a massive analog of the Feigin—Fuchs construction, and in
fact reduces to it in the massless limit. In this latter method, the spectrum of
particles of the new theories can be deduced from the restriction of the spectrum
of the original model.

Let us briefly summarize the known results. The case studied in greatest detail is
the coset SU(2); ® SU(2), /SU(2),,, perturbed by the operator of dimension
(L +1/(L + 3), for arbitrary L. This model is an integrable restriction of the
sine-Gordon theory (RSG). The exact spectrum and S-matrices can be found in
refs. [5,6]. In an analogous fashion, it has been conjectured [3] that perturbations
of the coset G, ® G, /G, by the operator with dimension (L + 1)/(L +h* + 1)
(h* is the dual Coxeter number of G) have an S-matrix that is related to the
restricted “#matrix of the Toda field theory based on the untwisted affine
Kic—Moody algebra GV, henceforth denoted Toda (GV). (Toda (SU(2)™) = sine-
Gordon theory.) Connections between the affine Toda theories and perturbations
of CFT were also suggested in refs. [8,9]; these authors’ investigation was at the
level of equations of motion, where the necessary restriction of the Hilbert space is
not apparent.

It should be pointed out that some special cases of perturbations of the cosets
G, ® G, /G, were studied without the formalism of restriction in refs. [10-12]. See
refs. [11, 49] for other references and a review. Our understanding of these results
indicates that they are best understood as a limiting case of the restriction
formalism. In fact, the connection of these models to soliton equations can only be
correctly formulated via restriction. Let us clarify this statement. From the view-
point of the restriction formalism, for the special case of perturbations of G, ®
G, /G, the degrees of freedom of the restricted model are “frozen” out and yield
a . »adegenerate mass spectrum of r-particles, where one particle is associated
with each fundamental representation (r = rank(G)). In the case of G = SU(2), this
phenomenon was explained in refs. [5, 6] where it was shown to yield the correct
spectrum of the perturbed SU(2); ® SU(2),/SU(2), theory, i.e. a single massive
Majorana fermion. In general the mass spectrum is equivalent to the spectrum of
masses that follows from the lagrangian of the Toda (G) theory (diagonalization
of the mass term). However these particles are not to be identified with the r Toda
fields themselves, even if classically they have the same mass. For this special case,
the S-matrices simply follow from crossing, unitarity, and the bootstrap. We refer
the reader to the results of sect. 7 on the SU(N) cosets for an explicit realization
of these remarks.

A novel feature of the RSG theories is their invariance under symmetries that
generalize supersymmetry to a fractional supersymmetry [6,13]. For the RSG
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theories associated with the coset SU(2); ® SU(2), /SU(2),,,, there are two
conserved charges of Lorentz spin +2/(L + 2). These symmetries were found to
commute with the exact S-matrix, and were also constructed off-shell in perturba-
tion theory. Similar results were found by Zamolodchikov for L = 2,4 [13].

Our intention in the present work is to determine the general pattern for
perturbations of the coset CFT G ® G, /Gy, ,. The main features that can be
concluded from the results of this paper are as follows. The coset CFTs are
invariant under the duality transformation K < L. We find perturbations of the
coset models that preserve the conservation of some fractional Lorentz spin
currents. There are two kinds of fractional spin symmetries that are dual to each
other, which we will call Q%) and Q2 symmetries. For fixed K the series of
massive models obtained by varying L all have the same Q7 symmetry; i.e. there
are conserved charges in each model of the series with Lorentz spin independent
of L and equal to A* /(K + h*). Because the perturbations preserve the duality,
there also exist symmetries Q™) of Lorentz spin h* /(L + h*). It was the Q© type
of symmetry that was discovered in the RSG theories in ref. [6], where they were
shown to be fractional supersymmetries. Consider now the case where G is
simply-laced. For fixed K but variable L, the perturbed coset models can again be
derived as a restriction of an integrable soliton theory. However since the r
(= rank(G)) bosonic fields of the K = 1 series must be augmented by fermions and
their parafermionic generalizations in the K > 1 generalized Feigin—Fuchs (FF)
construction, the massive soliton field theory also contains these extra fields. These
fields are a complete set for the massive theory. We will generically refer to this set
of fundamental fields as the FF fields. Furthermore this new augmented theory
manifests the fractional Q)7 symmetry, and thus may be considered as a kind of
integrable fractional super soliton theory. This represents a new class of integrable
QFT. Consider now the case where G is nonsimply laced. Now the generalized FF
construction (or vertex operator construction) for even the G; ® G, /G, , theo-
ries requires additional nonbosonic fields [14-16]; in the case of G =B, one
additional fermion is needed for the short root. We find that integrable perturba-
tions of the (By), ® By),/(By),., series (WB,-series) are related to Toda
theory on affine super Lie algebras. We will not present a completely general
theory here, but will motivate the above general scheme with some specific
examples.

Our construction has some interesting new consequences for some previously
known QFTs. The L — o limit of the perturbed coset models vields a current—cur-
rent perturbation of the WZW models, which are closely related to the principal
chiral models (sigma models) with Wess—Zumino term. The perturbed coset
construction in this limit provides a new solution to the soliton spectrum and
S-matrices of these models. Furthermore, these perturbations of WZW models are
seen to possess hidden fractional supersymmetries. Also, the perturbations of the
SU(N) cosets for K=1 and L — o give the SU(N) Gross—Neveu models. Finally
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the double limit K, L — « yields the principal chiral models (without Wess—Zumino
term).

Our conjectured S matrices for the SU(N) cosets indicate that the K =1 series
of models are NOT restrictions of the affine Toda (G‘) theories. This remark is
based on the fact that as L — « in the K =1 series, the SU(N) Gross—Neveu
models are recovered. This implies that the models for finite L are actually
restrictions of what we call a “deformed” Gross—Neveu model. This is a new
model; by “deformed” we refer to the idea that reintroducing a coupling constant
breaks the G symmetry to the quantum group symmetry Oqu(G).

In order to exhibit the generality of the construction we have included results
from some forthcoming publications by two of us [17,18].

2. Perturbed coset models and fractional spin currents

In this section, we review some basic facts concerning the construction and the
properties of the coset models. We also show how it is possible to choose a
relevant perturbation such that part of the underlying algebraic structure is
preserved.

As stated in the introduction, we will only be concerned with the coset models
Gg ® G, /Gy, - The embedding of G, , in G4, ® G, is the diagonal embedding.
Algebraically, the coset models are defined through the GKO construction [20]:
The Virasoro generators are the difference of the Sugawara generators. Namely, if
T(z) denotes the Sugawara stress tensor for representations of G at level K,
the stress tensor of the coset model is T(z) = Ty (z) + T,(2) — Tx, ;(2). Its central
charge is

G.2G,
c T—— =c(Gg) +c(G,) —c(Ggyr)
12Kp|® —h*
=rank(G) - (K+L+h*)(L+h*) +rank(G)(m), (21)

with p the Weyl vector of G; 12|p|* = rank(G)A*(h + 1). Here ¢(Gy) is the central
charge of the Sugawara operators: c(Gg)=K dimG/(K + h*); h(h*) are the
Coxeter (dual) number of G (dim(G) = (4 + Drank(G)). In eq. (2.1), we decom-
posed the coset central charge in a way which reveals the existence of a
Feigin—Fuchs-like construction: the first two terms in eq. (2.1) represent the
central charge of a Feigin—Fuchs field valued in the Cartan subalgebra of G,
whereas the second term is the central charge of the parafermions of
Gg/ [U(D)]r2k® [21, 22]).
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The Hilbert spaces of the coset models are made of the branching spaces of the
GKO construction. We denote the latter by [(K; A) ® (L; A') /(K + L; A")] where
A, A" and A” are integrable highest weight representations of G at the appropri-
ate level. They are defined by the decomposition of the tensorial product of the
representations #(K; A) and #(L; A") of G:

(K;4) 8 (L; A)
(K+L; A"

%(K;A)@%(L;A’)=ZJZ’(K+L;A”)®[ } (2.2)
=

To each branching space is associated a field, also denoted by [(K;A)®
(L; A /(K + L; AN z), which is primary with respect to T(z). By construction, its
conformal weight A4;4" is given by

Ao Cas(A) Cas(A') Cas(A”")

A = + - + 23
MoK+ Y 2L+ kY 2K+L+hY) " (2:3)

with nonnegative integer n. Cas(A) denotes the quadratic Casimir operator in the
representation A which is (A, A + 2p), where p is half the sum of positive roots of
G. The integer n depends on the depth at which the highest weight (K + L; A”)
appears-in #(K; A) ® #(L; A).

Coset models can be thought of as representations of some chiral algebras
[22-24]. The chiral algebras are not unique; they can be either local, e.g. Casimir
or W-algebra, or nonlocal. It is the nonlocal point of view that we will use. Namely,
for fixed K but variable L, we will think about the coset models as representations
of the nonlocal algebra generated by the nonlocal coset field J*(z),

(K; Adjoint) ® (L; -)

J(K)(Z)z (K+L")

(2). (2.4)

The dot denotes the scalar representation. Its conformal weight is
A(JEY =1+n*/(K+h*). (2.5)

Note that this field exists only for K > 2, because the adjoint representation is
integrable if and only if the level is larger than or equal to two. Note also that we
choose the scalar representation at level L and K+ L in order for the conformal
weight to be independent of L.

By construction, a multiplet of the algebra generated by JX)(z) is made of
branching spaces. The multiplets are labeled by two highest weights A" and A” at
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level L and K + L, respectively:

{A,A =Y (2.6)

A

(K;A)®(L;A)
Bl

In eq. (2.6), the sum over the integrable highest weights (K; A) is restricted to
those which belong to the equivalence class of (A" — A") in P/Q. P(Q) is the weight
(root) lattice of G.

Before analyzing perturbation theory, let us point out that it is possible to
generalize the construction (2.4) to other weights (in addition to the adjoint
representation). The generalized construction yields new currents only for the
non-simply laced algebras because the new currents are in one-to-one correspon-
dence with equivalence classes in Q/Q Y, where QY is the long root lattice of G.
These currents are always generated by one current with conformal weight

A x§h
T K+ h*

Mod integer, (2.7)

with x, equal to half the length squared of the short root.

Let us now look at perturbation theory. There exist relevant perturbations of
coset models such that there is a nonlocal conserved current in the perturbed
theory. The nonlocal conserved current is associated to the current (2.4). The
appropriate perturbing field @, (z, z) is “dual” to the current J¥®(z):

& (2.7)= (K;-)®(L;) (2.7) (2.8)
perti 2 (K + L; Adjoint) P '
It induces a relevant perturbation because
=] —=—. 2.9
A((ppert) 1 K+L +h* ( )
The field @,.,(z, Z) is local with respect to the current J*(z). Indeed, the fusion
rules are
[JEOTX [@per ] =[] (2.10)
with
- (K; Adjoint) ® (L; -)
[vi= (K + L; Adjoint)
Lh*
A(W) = ATE) + A(@,) =2+ A(F) . (2.11)

(K+h*)(K+L+h*)’
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Thus, the operator product expansion (OPE) (2.10) is local. We can use arguments
similar to those used by Zamolodchikov in ref. [2] to obtain the equation of motion
of the current J¥(z) to first order in perturbation theory. Namely,

d dw
(K >y — _ ) 7(K)
792, 7) )\gézﬂ_itppen(w,z)l (z). (2.12)

The residue in the OPE (2.10) being a total derivative, there is a conserved current
of spin 1+ k* /(K + h*) in the perturbed theory. More precise computation gives

0 J
ZJH(2,3) = —H®)(2, 7) (2.13)
0z dz

with H&)(z, 7)) = —ACUK + h*) /LYW (z)D

ert(Z), where C is the structure con-
stant of the OPE (2.10). The global conserved charge QX

Q(K)=¢(dzJ(K)(z,Z) +dzH®)(z, 7)) (2.14)

has Lorentz spin h* /(K + h*).
Similarly, by interchanging the role of z and z we obtain a conserved current

J _ J _
— T8N (z,2) = —HX)(z,3), (2.15)
0z 9z
with the global conserved charge
oK =95(dzi<'<>(z, 7) +dzH®(z, 7)) (2.16)

of Lorentz spin —h* /(K + h*).

The field by which we are perturbing is symmetric in K and L. Therefore by
exchanging the role played by K and L we can construct conserved charges Q%
and O“ with Lorentz spin +h*/(L +h*). It was these symmetries that were
constructed for the RSG in ref. [6]. In the approach we are developing here one
set of conserved charges, say Q% will be associated to an internal symmetry
algebra acting on the multiplet of fundamental Toda (or FF) fields. For example in
the SU(2) cosets, if K =2 the symmetry is supersymmetry, and for general K the
symmetry is the fractional supersymmetry constructed over the quantum SU(2)
algebra with g = exp(imh* /(K + h*)). As we will see, the exact S-matrices are
invariant under both the Q® and Q® symmetries.

The two charges O and Q® commute (or anticommute depending on the
Klein factor we choose):

[0®, 0] =0. (2.17)
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In the unperturbed CFT this follows from the OPE between the currents J% and
J:

[JETx [JB] =[v1], (2.18)
with
. [(K;Adi) ® (L; Adi)
B (K+L;-) ’

A(JEO) + A(TDY =2+ A(P'). (2.19)

One can easily check that the commutation relation (2.17) also holds to first order
in perturbation theory. One can also similarly prove

[o®, oP] =o.

The above analysis does not demonstrate that the perturbed models are integrable.
In our general framework, integrability is established by relating these models to
restrictions of integrable soliton equations. This will be done for some specific
cases in the sequel.

Finally let us comment on the renormalization group (RG) flows. From what is
already known for the simplest coset models [13,25-28], it is often conjectured
that, in one direction (say A < 0) the perturbation yields a massive theory (i.e. in
the IR limit, the theory is trivial), whereas in the other direction (say A > 0) the
theory is a massless theory (i.e. in the IR limit the theory is another CFT). More
precisely, in the latter case, it is conjectured that for L > K, the RG flow defined
by the perturbation (2.8) maps the coset models G, ® G, /Gy, into the coset
models Gg ® G; _ /G, . In other words the RG flow shifts L — L — K. Moreover,
the UV field @, (z, 2), eq. (2.8), flows into the IR dual field J(z, Z), eq. (2.4) with
(L->L-K).

3. Soliton spectrum and S-matrices for the SU(2) cosets

In this section we consider the perturbations of the SU(2) cosets proposed in the
last section for arbitrary K and L.

Let us presume that the perturbations define integrable models. The perturbing
operators (2.8) are invariant under the duality transformation K < L. Thus we
require that the S matrix respects this duality. We also require that when K or L
equals 1, we recover the known result for RSG. In the last section we have seen
that the S matrix should be invariant under two independent symmetries Q) and
O™, This fact supports the idea that the S-matrix should be the tensor product of
two factors, where each factor is separately invariant under one of the symmetries.
All of these requirements taken together lead to a unique conjecture for the §
matrix.
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As usual, we parametrize the energy and momentum of the asymptotic particles
in terms of rapidity 6;:

P,=m,;sinh g, E,=m,cosh®;. (3.1)

For two particle scattering, define 6 = 8, — 8,. We propose the following two-par-
ticle S-matrix:

SK-D(9) = SEKL(8) ® SE(0) . (32)

Above, each of the factors SE&), or S&J; is a restricted sine-Gordon S matrix, and
is described in detail in ref. [6]. More precisely, for the arbitrary K, L the spectrum
consists of kinks:

Kopap(0); b=axh, b =a+1,
a,be (0,51, jui=K/2), @ b'e{0,0 1, =172} (33)

max s+ Jmax

An asymptotic N-particle state can be described as

‘ Kaoal?ab“i(Bl)Kalaz'»ai“'z(BZ) Tt KaN—laN;“’N—lﬂ'N( 9N)> in,out * (3'4)
The S matrix for the process
Kda;d’a’(ol) + Kab;a’b’(BZ) - ch;d’c’(GZ) + ch;c’b’(el) (35)
is given by the matrix elements
Si&ac(0) - St (6) (3.6)

The factors S&s); are proportional to [6]

S [2a +1][2¢ + 1] ‘/26 - im0\ .
+ — .
RSGde & ST (K+2) [2d+ 126 +1]] ‘o™ (K+2) ar (37)
where
qa"—q " ) —iT
[n]=—q_71—, with q=—exp(K+2). (38)

It is easy to see that eq. (3.2) satisfies all of our requirements. It is manifestly
dual. When K (resp. L) equals 1, S§) (resp. S{sy;) becomes trivial, i.e. equals the
identity, since it corresponds to the S matrix of a massive Majorana fermion.
Furthermore, S5 (resp. S&);) is invariant under a Q%) (resp. Q®) fractional
supersymmetry; this follows from the on-shell construction in ref. [6] for RSG*.

*Bazhanov and Reshetikhin have independently found the above tensor product form of the
S-matrix for some apparently related spin chains on the lattice (private communication).
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The S matrix (3.2) has some interesting consequences for some other quantum
field theories, namely, perturbations of SUQ2) WZW models, and for super
sine-Gordon (SSG) theory and its fractional super relatives. These connections will
be explored in the next sections.

4, Perturbations of WZW models

Consider the perturbations of the coset G, ® G; /Gy, proposed in sect. 2 in
the limit that one of the levels, say L, goes to infinity. The CFT becomes the WZW
model Gg. The perturbing operators in this limit have dimension (1, 1) and can be
identified with the Kac-Moody currents J%(z). Thus in this limit, the perturbed
CFT has the action

A ]
S=Swzw+mfdzz ‘é]“(z)]“(f). (4.1)

The fractional supersymmetry Q%7 survives in this limit. In the WZW theory the
0% symmetry is generated by the current

T (z) = q,,7° P (2), (4.2)

where g, is the Killing form, J¢, is a mode of the Kac-Moody current (J%(z) =
¥, /27"~ 1), and ®°(z) is the chiral primary field in the adjoint representation of
G. The Q® symmetry has Lorentz spin 0 and becomes identified with an internal
symmetry G.

The above model (4.1) is closely related to the principal chiral model (PCM)
with Wess—Zumino term [29]. The action for such a model can be taken as

s=SWZW+af d%2 Tr(3, g~ '9*g), (4.3)

where g(z, z) is taken to be an element of the group G. The second term in eq.
(4.3) is the action for the PCM, and it has the same form as the kinetic term in
SWZW The manner in which the models (4.1) and (4.3) differ can be seen by the
identification of the Kac—Moody currents in terms of the field g:

K _ K
JU(z)t? = ——2—82gg_1, J(Z) = —zg_lazg, (4.4)

where % are matrices generating G [30]. The perturbation in (4.1) is thus

(AKz/Swi)fdzz Tr(d,g8 ')(g7 9. g).- (4.5)



C. Ahn et al. / Perturbed coset CFTs 419

We turn now to what happens to the spectrum in the limit L — «, We specialize
the discussion to the case G = SU(2). This question can be studied by examining
the S matrix factor S{z); in this limit. Recall that in the derivation of S{5); from a
restriction of sine-Gordon theory, the restriction came about by decomposing the
multisoliton Hilbert space into irreducible representations of the quantum group
%,(sl(2)), and removing states in multiplets with SU(2)-spin less than j,,, =L /2.
In the limit L goes to infinity, j_ .. goes to infinity and the restriction is thus

undone. This implies that the new spectrum is given by
Ka(0),  abefoh1,., 1K), (46)

The extra quantum numbers + refer to the original two-dimensional vector space

of the sine-Gordon soliton quantum numbers. The S matrix for these particles is
then the L — o limit of

S(8) = S{E5(0) ® Sg(x =e®/07D, g = —e i /L*D), (4.7)
where Sy is the 4 X 4 S-matrix of sine-Gordon (SG) solitons. (See ref. [6] for the
conventions we are following in describing the SG S-matrix in terms of the
variables x and g.)

The L — < limit in eq. (4.7) is somewhat delicate. Define e =1/(L + 2), and let
x=e=1+e0, g=—e "= —1+ire. (4.8)
We now take the € — 0 limit. Recall that the SG S-matrix [31] can be written as

Ssa(x,q) =u(x,q9)oR(x,q)07 ", (4.9)

[6], where o is a gauge transformation,

PR(x,q) =xR*—x"'R- (4.10)
q 0 0 0
Re= |0 q‘lq_l N R SV S (4.11)
0 0 0 g¢g

and u(x, g) is an overall scalar factor required for unitarity,

, 1 = (1-x2q* ) (1—x"2q>%)
u(x,q) = (1-x%%) | 11 (I —x 4 9) (1 —x%g> %) |’

(4.12)
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In eq. (4.10), P is a permutation operator. In the limit € — 0,

. 0 ir 8 0
#(xa)=2l o 5 0
0 0 0 im—28
=2e#™(0). (4.13)

In addition we have

1 © Lim(2i=2) +8] [im(2j—1) — 6]

(im—9) |j=i [im(2j-2) — 8] [im(2j-1) + 6]

2eu(x,q) = =v(6). (4.14)

The gauge transformations ¢ can be disregarded in the limit. Thus the S matrix
for the particles K x(8) is given by

S(6) = Sks5(0) ® $7(9), (4.15)
where

S™(9) =v(0) PR™(0). (4.16)

The factor P#™(9) is a so-called rational solution of the Yang-Baxter (YB)
equation. (The terminology is this: trigonometric solutions of the YB equation
involve the functions exp(a#), whereas the rational solutions are polynomial in 6.)
This rational factor was anticipated due to the fact that the Q‘“) symmetry has
Lorentz spin 0 in this limit and corresponds to an internal symmetry G, which is
carried by the factor $§™(#). What was unexpected is the RSOS factor SE5)% in eq.
(4.15). This factor makes manifest the hidden Q% fractional supersymmetry of
the current—current perturbation of the WZW models. Reshetikhin has informed
us of some very interesting recent work on the solution of higher SU(2) spin-chains;
he finds that the exact Bethe ansatz methods reveal the same RSOS factor [32].
Finally, let us consider the double limit K and L — . We have already taken
the L — o limit and shown that the resulting model is a perturbation of the SU(2)
level-K WZW model. As K — =, the action (4.1) is dominated by the kinetic term
for the WZW field g, and is thus nothing other than the PCM. This can be seen by
rescaling the current J—J/ VK, then taking the K — o limit. Just as for the
L — o limit of the Q) symmetry discussed above, the QX7 symmetry becomes an
internal symmetry G in this limit. Thus the full resulting symmetry is 2 G® G
symmetry, characteristic of the PCM. Following the reasoning above, the K — «
limit of eq. (4.15) yields an S matrix that is the tensor product of two rational
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S-matrices, and thus manifests the G ® G symmetry. This agrees with the result
found in ref. [33].

5. Minimal superconformal series and (fractional) super
sine-Gordon theory

In this section we illustrate the connection to integrable soliton equations by
considering the case of SU(2), ® SU(2), /SUQR)., for K =2 and variable L. This
series of CFTs constitute the superminimal series [34,35]. As we will see the
perturbed models are restrictions of the supersymmetric extension of sine-Gordon
(RSSG) theory. We also present the S matrix for the ordinary SSG theory and for
its fractional super generalizations.

5.1. PERTURBATION OF SUPERSYMMETRIC FF CONSTRUCTION AND SSG THEORY

From the viewpoint of the general formalism of sect. 2, the superpartner to the
energy—momentum tensor is the current J(z) in eq. (2.4), with dimension 2. Thus
if we perturb the models with the operator @, given in eq. (2.8), the supersym-
metry will not be broken. This operator has dimension

A(cbpen)=(L+2)/(L+4) (5.1)

by eq. (2.9). The integrability of the above perturbed models can be established by
relating them to the SSG theory at special rational values of the coupling.

The fields of the supersymmetric Feigin—Fuchs (FF) construction for the super-
minimal series {35] can be related to the SSG fields. Introduce the usual super-
space coordinates z,8 (and z,8) and covariant derivative

D=9,+83, and D =3d;+8d.. (5.2)

As usual z = 3(¢ + ix). The holomorphic fields of the FF construction consist of a
single superfield @' = ¢’ + 6¢', with the propagator

D'(21,0,)P'(2,,0,) = —log(z, —2,—6,8,). (5.3)
The energy—momentum tensor is
T(z) = 30¢'9¢' — 39’04’ — V2 ad’d’, (5.4)
where

1
T V2AL+)(Ltd

(5.5)

Ay
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Define the super vertex operators
V.(z,8) =exp(ivV2ad'(z,6)). (5.6)

The screening operators are
Vi=fdzd0Vai(z,0) (5.7)

and have dimension 1, where

L+4 L+2
a, =\ ————— , a =—\ .
2(L +2) 2L +4)

The primary fields of the minimal series are

?, ,=exp(iV2a,, @), (5.8)
where
=1(1-m)a,+3(1=-n)a_ (5.9)

Xon

with 1 <m <L + 1,1 <n <L + 3. The Neveu-Schwarz sector is givenby n —m =

even; the Ramond sector by n —m = odd.
Consider now the SSG theory with the euclidean action

S=(1/32)fd22d29[0<p545+mcos ?]. (5.10)

The constant B8 is a coupling constant. We take the convention d?z =idxdz/2.
Following the reasoning in ref. [6] the super FF fields are identified with the SSG
fields by requiring one of the operators in the potential of eq. (5.10) to be a
screening operator. Expanding cos @ = 3[exp(i®) + exp(—i®)], we take the
exp(—i®) term to be a screening operator. Since the SSG propagator is

D(z,,0,)P(z,,0,) ~ _(32/477)1()%(21 —z,—6,8,), (5.11)
the SSG fields are related to the FF fields by the rescaling

D =(B/Vam)d'. (5.12)
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Thus we identify

B B> L+2
—lm =l\/§a’., = g—m (513)

This identification has also been made in ref. [36].

Since the screening operator has dimension 1, the part of the action that
includes only the free piece and the screening operator can be considered as a
CFT; it is a super Liouville theory. The extra term in the action exp(iB®'/ V4 ) is
treated as a perturbation and is equivalent to the @, ; primary field as can be seen
from eq. (5.8). The dimension of this operator is (L +2)/(L + 4), in agreement
with the general result (2.9). It must be emphasized that the decomposition of the
action (5.10) into a conformal piece and perturbation is partly heuristic. The action
for the conformal piece is not sufficient to encode the truncation of the Hilbert
space one performs in the super FF construction (projection of null vectors). Thus
the spectrum of the perturbed super minimal series is not equivalent to the
spectrum of the SSG, but must be obtained as a restriction of it, as will be
described below. Also, the ordinary (unrestricted) SSG theory does not have a
background charge and corresponds to ¢ = % in the massless limit.

The above relation between perturbed super FF theory and SSG can be further
justified using perturbation theory, as was done for the SG theory in ref, [8]. As for
eq. (2.12), if a CFT is perturbed by an operator of the form (A /27i) [ d*z Doz, 2),
then the equations of motion become

d _ dw _
2 F(z,2) =/\9é2—m<1>pm(w,z)F(z). (5.14)

In order to preserve the Z, symmetry ¢’ — —¢' of the super FF construction, we
make the ¢, ; perturbation 7, invariant by taking it to be

Pen = = 5 cOS(B)U(2)T(2), (5.15)

where m is considered as a perturbation parameter. (For the discussion of
equations of motion we have set 8/v4w = 1.) The equations of motion computed
from egs. (5.14) and (5.15) are

m — — m
b= =5 cos($)T, 0.0 = = cos($)i

m _ m?
9,0;¢p = 7{//(// sin ¢ — [T COS ¢ sin ¢] , (5.16)
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TABLE 1
Dynkin diagrams for (affine) super Lie algebras

B O—O -+ —0—0==0
al az aN‘l aN
B(O;N)

(=0SP(;2N)) o——0C— - - 0—0C=>0
al az aN'[ as
8"'o;n) o>0—0— -+ -0—0O=>®
ao al aN-l aN

a‘ Q.

A%o;2n-1) O e ==
aN-I aN
Qo

Ao, 2n) O 0—O— -+ + ~O—C=9

) I 2 N-| N
N+ =0—0— - O0—0O=x®
% Q e, Ao Ay

*The convention followed for these Dynkin diagrams is that the darkened circles refer to the
fermionic simple roots.

except for the last term in brackets. The above equations (including the term in
brackets) are the same as follow from the action (5.10); thus to first order in
perturbation theory, the super FF fields satisfy SSG equations of motion. The
additional second order term in the third equation of (5.16) arises from elimination
of the auxiliary field F in @ =¢ + 64 + 0¢ + 9F. This extra term can be
recovered in perturbation theory by requiring @, to be invariant under super-
symmetry.

The SSG theory is integrable because it is equivalent to Toda theory on the
twisted super affine Lie algebra C®(2) [37-39]. The equation of motion of the
SSG theory can be written as a super zero-curvature condition. The generalized
Dynkin diagram of C®(2) can be found in table 1. The convention followed in
these diagrams is that the darkened roots refer to the fermionic ones. Let
(e;, finh;=a;”, i=0,1) be a Chevalley basis for C‘?(2) satisfying

[h; 0] =0, {ei. f;} =8ih;,

[hi,ej] = (aiv,aj)ej, [hi,f]—] = —(aiv,aj)fj.
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The generators can be written as
e, =GP, fi=G¥, hy=-H/2
eq=AG?,  f,=(1/A)G?, h,=H/2, (5.17)
where A is the affine, or spectral, parameter. The generators in eq. (5.17) satisfy
[1.647] = +1642,
{GP,GV} = —{GP,G?) = —3H,
(64,60} = (02,62} = + 11+,
[47,7°]=2H, [H,J*]=4J%,

{G(Q’ G(in)} =0,
(69,69} = (60.GP) = .

Note that H and G') themselves generate OSp(1,2). The lowest-dimensional
representation of C®(2) is given by

H = }diag(1,0, - 1), H=1diag(1,2,1),
1{0 1 0 1{ 0 0 0
GP=210 0 1, GO=-1-1 0 0},
0 0 0 0 1 0
1{0 -1 0 1/0 0 0
GP=—10 0 1 GP=—|1 0 0f. (5.18)
o 0 0 o 1 0

Define a superfield valued in the Cartan subalgebra @ = &(x,6,0)H. The SSG
equations of motion are equivalent to the super zero-curvature conditions

{(D+A,D+A)=0, (5.19)
where
D+A=e"®"De®+iVm e P Ae™®

D+A=e®De ®+iym e ® Ae'®. (5.20)
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Above, A and A are sums of the positive and negative simple roots respectively,
ie.

A=e,+e,, A=fo+f,. (5.21)

The zero-curvature formulation along with its associated quantum inverse scatter-
ing problem can in principle be used to solve the model exactly. However as we
will see, for our purposes there is no need to carry this analysis through.

The SSG theory has the conserved topological current,

JE=(1/m)e" 3. (5.22)

The soliton sector consists of field configurations with non-zero topological charge.
Consider a solution with = ¢ = 0. In this situation the equations of motion (5.16)
are the same as for sine-Gordon theory up to a factor of 2 (since sin2¢ =
2sin ¢ cos ¢). Using known topological solutions of sine-Gordon theory, a solution
of the SSG theory with nonzero topological charge is

do( x) =2tan™'[exp(mx/2)] . (5.23)

The topological current (5.22) is normalized such that the above solution has
topological charge +1. Note that the normalization of the topological current
(5.22) differs from the sine-Gordon normalization by a factor of 2, a fact that will
be important later. A general soliton solution has a fermionic partner of the same
mass by supersymmetry. There also exist antisoliton solutions with topological
charge —1, which also have fermionic partners. Thus we expect that the soliton
sector consists of two supersymmetry doublets with opposite topological charge; all
particles have the same mass.

5.2. SOLITON SPECTRUM AND $§ MATRICES OF THE RESTRICTED SSG THEORY

Our conjecture is that the soliton spectrum and § matrices of the above
perturbations of the superminimal series are as given in egs. (3.2) and (3.3).
Namely,

Srssc(8) = Sksc(0) ® SHe(6) . (5.24)

In order to develop the RSSG theory in analogy with RSG, we would need to start
with the § matrix of the soliton sector of SSG, and from it derive the RSSG result.
Unfortunately, despite several attempts, the § matrix of SSG solitons remains
unknown. However, since we already are in possession of the soliton spectrum and
S matrix for the restricted model, we can reverse the logic and undo the restric-
tion. This will provide a new solution of the SSG theory, and will be described in
the next section.
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Here we will discuss some of the features of the RSSG S-matrix, relating them
to the super FF and super Landau-Ginsburg constructions. The restriction of
quantum numbers in the RSSG S-matrix can be compared to the implicit restric-
tion in the super FF construction, following the reasoning in ref. [6]). The topologi-
cal charge ¢ of an operator is defined as [[dxJ°, &]=t&, where J* is the
topological current. From the form of the primary fields @,, , in eq. (5.8), the
relation between the SSG and super FF fields (5.12), and the properly normalized
topological current (5.22), we find that the primary fields @, , have topological
charge

L+4). (5.25)

48 L+2
bnn = o ®mn = (1-m)—-(1 ‘")(
The fields with integral topological charge are &, . Since m <L + 1, the mini-
mum integral topological charge is — L. Thus there are effectively L + 1 minima in
the restricted SSG potential, in accordance with the super Landau-Ginsburg
description [40]. Compare this to the spectrum of kinks K. ,.,.(6). Consider the
quantum numbers a',b' €{0,1,1,...,j5)}. If we interpret the labels a',b’ as
describing a kink that connects two degenerate vacua, then the number of such
minima is 2j&) + 1=L + 1, in agreement with the above reasoning. The other
quantum numbers a, b label the states of a supermultiplet, which consists of two
particles, K., and Koy o
Finally we hpoint out that the RSSG theory at the special value of L =2 is an
integrable perturbation of an N =2 CFT at ¢ = 1. This follows from the fact that
both the QX and Q'Y symmetries are ordinary supersymmetries in this case.

5.3. THE (FRACTIONAL) SSG S-MATRIX

We present here the result for the S matrix of the SSG solitons. As explained
above, we can undo the restriction of the RSSG theory to deduce the SSG
S-matrix. In this procedure the factor S is unaffected; however the factor S{&k
becomes an ordinary sine-Gordon soliton § matrix, with a different dependence
on the coupling. Since B2/4m = (L + 2) /(L + 4), we are led to define a function y

of the coupling B as

B*/2m

L+25’y(ﬁ)=m. (5.26)

The SSG spectrum then consists of kinks K x(8), a, b € {0, 3, 1}, with § matrix

§%59(0) = SEE2(0) @ Seg(x =€V g = —e /7). (527)
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The supersymmetry of this S matrix is carried by the S& factor and acts on the
a, b indices. The on-shell supersymmetry leaves the second index » of the kink

~ unchanged. Thus the superpartners are KOJ—; and K fl. For K = 2 the fractional
charges Q and Q satisfy the supersymmetry algebra [13]

Q*=P, Q°=P, Q0+0Q0-=T, (5.28)

where T is a topological charge. The additional topological generators in the above
algebra are characteristic of supersymmetry algebras in soliton sectors [41). Thus
we have the unexpected result that the S matrix of SSG solitons is equivalent to
the tensor product of an § matrix for SG solitons with the RSOS S-matrix for
perturbations of the tricritical Ising model. The complete spectrum, including
bound states, can be deduced as usual from the pole structure of the above §
matrix.

Note further that as 82/47 — 1, this is the same as the L — o limit of analysis
of sect. 4. This means that the perturbations of the level-2 WZW models consid-
ered there are equivalent to SSG theory at 2= 4. Another way of thinking
about this phenomenon is that in the L — o limit of the coset theories, global G
invariance is achieved. However, reintroducing the coupling 82 breaks G to the
quantum group %,(G). The enhanced SU(2) symmetry is exactly analogous to what
occurs in the SG theory at B2/8w = 1 [42].

The above analysis can be extended for arbitrary K. The result yields a spectrum
K2 a,be{0,1,...,3K}. The resulting S matrix is for a new integrable model we
will refer to as the fractional super sine-Gordon theory (FSSG). Due to the
generalized FF construction of the coset models, the field content can be taken to
be a single boson plus a Z, parafermion. We define the coupling B via the
propagator normalization as in (5.11). This model has the S matrix

S136(0) = SKE6(0) ® Ssg(x =€/, g= —e™/7), (5.29)
where now
KZBZ
"B ke

The above function y(8) was computed in exactly the same manner as for (5.26),
namely by using results from the generalized FF construction in ref. [22]. Also, as
for the SG and SSG theories, for special values of the coupling, namely

B*/8m=1/K,

these theories are equivalent to the perturbations of the level-K WZW models
studied in sect. 4. These theories will be more fully developed elsewhere [18].
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6. Perturbations of WB-series and Toda on classical affine superalgebras

In this section, we develop the connection between WB models and Toda
models on superalgebras. It is the first step towards the generalization of the
previous section on SU(2) to larger algebras. The main point we want to stress is
how one should add fermions and/or parafermions when moving to nonsimply
laced algebras and /or higher levels. In other words, one should consider Toda-like
models on super algebras or more exotic algebras. The WB models are the coset
models B ® B /BIE+1U. (The numbers in the square brackets are the levels of
the representations of B{).) The Virasoro central charge of WB,-models at level L
is

(2N -1)(2N + 1) 1

~N|1- .
¢ QAN+L)Y2N+L-1) | 2

(6.1)

The parafermion of the level-one representations of By is a free fermion (because
B, has only one simple short root whose square length is one). Therefore the
Feigin—Fuchs-like construction of the WB, models involves bosonic fields d¢
valued in the Cartan subalgebra of B, together with a free fermion ¢ [14-16]. The
1 term in (6.1) is the central charge of the fermion and the full Feigin-Fuchs stress
tensor is

T(z) = —3(3)” +iaop 02 + 3oy (6.2)
with p the Weyl vector of B, and

1
~ J(L+2N-1D(L+2N)

Qg

The screening operators are in two-to-one correspondence with the simple roots,
ay,...,ay, of By. They are

Vi(z) =explia oy ), fork=1,...,N—1,
V¥(2) =g (2)explia oy ) (6.3)

with @, +a_=ag, and @ a_= —1. Our convention for the simple roots is given
in table 1. The screening operators have conformal weight one.

The WB, models were initially introduced as representations of a Casimir
vertex operator algebra of By, i.e. the local chiral algebra of currents W, j)(z) with
conformal weight A(j)=m(j)+ 1 where m(j) runs over the exponents of B:
m(j)=1,3,...,2N — 1. But as we explained in sect. 2, the coset models can also
be interpreted as representations of a nonlocal algebra. However since the case we
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are considering is K = 1, the current (2.4) does not exist, and we have to use the
alternative construction mentioned in sect. 2. For the algebra B,, the only
nontrivial representative of Q/QY is the highest weight w, of the vector repre-
sentation. The nonlocal current associated to w,, is

(Le(L;:)

G(Z)=[*m](l)a (O =wy). (6.4)

Its conformal weight is A(G) =N + 1 (one-half is the conformal weight of (1; O)
and N is the depth of (1 +L;-) in the tensorial product (1; 0)® (L; - )). Obvi-
ously for N = 1, the current G(z) is the supercurrent and we are simply describing
the super Feigin—Fuchs construction for G = SU(2). Moreover because SO(3) =
SUQ2)/Z,, the coset Bl ® Bi*1/BLE* 1 is equivalent to A @ ARLI/ALRE+2,

Toda models on the finite-dimensional simply-laced Lie algebra X were shown
to be equivalent to the WX-models [23,24]. However in the case of a nonsimply
laced algebra the quantization used in ref. [23] encounters difficulties due to
screening operators. In the case of the algebra B, there is only one short simple
root, a, (of length one). One finds that a free fermion should be added to the
vertex operators associated to the short simple root. Thus the short simple root
acquires a fermionic character, and, starting from the Lie algebra B, we are led to
the super Lie algebra B(0; N) = OSp(1,2N). It is the only classical super Lie
algebra [43] (with non-singular Cartan matrix). Its Dynkin diagram is shown in
table 1.

Let us now describe the B(0; N) Toda models. Let (e, f;, a;), j=1to N— 1, be
the bosonic generators of B(0; N) and (e, f,, @,”), s = N, the fermionic ones. Let
D(z,0) = d(2) + 0y(z) + 8y(z) + B6F(z) be a superfield valued in the Cartan
subalgebra of B(0; N):

P(z,0) = Zajvtpj(z,ﬂ) + Y a P(z,0). (6.5)

J s

Then the B(0; N) Toda equations of motion for the superfield &(z, #) are

_ m m? _
DD® + EZaSV CB((D’O(‘)-F —B—GOZajV Cﬂ(d)’af)=0, (66)
s j

where B is a coupling constant; « («,) are the bosonic (fermionic) roots of B(0; N):
a,=¢;—¢€,,forj=1t0o N—1; a;=€y for s=N.

Note that the 08 term associated to the bosonic simple roots breaks the
supersymmetry. Only OSp(1,2) has no bosonic simple roots; in that case (6.6)
reduces to the supersymmetric Liouville equation in agreement with the equiva-
lence between the WB,; models and the minimal superconformal models, as
explained in sect. 5.
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As in the super Liouville case, eq. (6.6) can be written as a super zero-curvature
condition. Namely, if we define

D+A=ecBP/2DeBP/2 4 i eBP/2 Ao PP/2
D+A=eP?2De FP/2 4 \m e FP/2 N ePP/? (6.7)

with A =Y e + 0% e and A=Y f +6%¥ ;fi» then the super zero-curvature condi-
tion
(D+A,D+A}=0 (6.8)

is equivalent to the B(0; N) Toda equations. The super zero-curvature condition
(6.8) ensures the classical integrability of the theory.

In components, eq. (6.6) tells us that the fermions of the superfields @’(z,8)
associated to the bosonic roots «; decouple. They can be consistently set to zero.
The other equations of motion are

39 ¢'(z) = (m?/B)eP® (6.9)

for the bosonic simple roots, and
I m¢ B(b, an) I m@ B(o.an)
= —ure TN R = ——ye » AN s
B B

_ m _ m?
30 ¢N - _ _!p(p eﬁ(dh“;) - — C?-B(tb,azv) (6.10)
B B
for the fermionic simple root a,. (We have set ¢ =.)

The quantization of the (super) Liouville models by Gervais and Neveu [44]
leads to the minimal (super) conformal series [45, 46]. In the same way, quantiza-
tion of egs. (6.9) and (6.10) leads to the Feigin—Fuchs construction of the WB,,
models; the field contents are the same: a bosonic field valued in the Cartan
subalgebra of B,, plus one fermion associated to the short simple root of B,; the
improved stress tensor of the B(0; N) Toda model is the stress tensor (6.2); and for
specific values of the coupling constant B(8 =ia_) the vertex operators in the
r.h.s. of the egs. (6.9) and (6.10) become screening operators.

Let us now look at perturbed WB theories by comparing them to Toda models
on affine superalgebras. More precisely we will analyze which of the relevant
perturbations of the WB models can be described by restricted Toda models on
affine superalgebras*. We will only be concerned with the classical affine super-
algebras (with nonsingular Cartan matrix). They are named B“(0; N), A®(0;
2N — 1), A0;2N) and C@(N + 1) [43]. The corresponding Dynkin diagrams are

* We expect that these models are not strictly restrictions of an affine super Toda theory but actually
of a related model with extra interactions for the non-simple roots, just as for perturbations of the
simply-laced cosets (see sect. 7).
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given in table 1. Note that in all cases the horizontal subalgebra of the affine
algebra (the one obtained by deleting the extended roots «, in the Dynkin
diagram) is the superalgebra OSp(1,2 N ). Moreover, in all cases except C(N + 1),
the extended root is a bosonic root.

The equations of motion for the Toda models on affine superalgebras have the
same form as eq. (6.6) for Toda models on finite superalgebras. However in the
affine case, the sum is over all the simple roots of the affine superalgebra. Thus
one has to project eq. (6.6) onto the horizontal algebra taking into account that the
extended root is ay,=d — 6 with d the derivation and 6 V=X 4 a;"+ L.a a,’
where aV are the dual Kic labels of the affine superalgebra. The projected
equations of motion can be easily written down. In the limiting case C®(2), it gives
the equations of motion of the SSG model studied in the previous section.

As in the finite case, the equations of motion of the Toda models on affine
superalgebra can be written as a zero curvature condition. The connection is the
one given in eq. (6.7) but it is now written with the generators e and f of the loop
superalgebra.

Because in all cases the horizontal algebra of the affine superalgebra is the
superalgebra OSp(1,2N), all Toda models on affine superalgebra can be inter-
preted as perturbations of the OSp(1,2N) Toda models. By looking at the
equation of motion it is easy to determine which perturbing fields the affine Toda
models correspond to. But not all the perturbations are consistent with the
restriction. A case by case inspection reveals that:

(i) The BY(0; N) Toda models describe a perturbation by an irrelevant field.

(ii) The restricted AP(0; 2N — 1) Toda models describe the perturbation of the
WB models by the relevant perturbing field @, =[(1;-)®(L;-)/(1 +
L; Adjoint)]. Its conformal weight is 4 ., = (L + 1) /(L + 2N). As for simply laced
algebras [10] it is conjectured that the S matrix of this perturbed WB model with
L =1 is the minimal S-matrix of the A®(0;2N — 1) Toda models. The spectrum of
the masses of the bosons depends only on the Dynkin diagram irrespective of the
fermionic or bosonic character of the simple roots [39]. Therefore the masses of
the bosons of the A®(0;2N — 1) Toda models are the same as the masses of
bosons of the BO(N) Toda model, namely,

M, =2Msin(wk/2N), fork=1,....N—-1,

My=M. (6.11)

Also the WSO(N) models at level one (i.e. SO(n), ® SO(n), /SO(n),) are equiva-
lent to a free boson compactified on a circle of radius R = vVn /2. The perturba-
tions we are describing correspond to the perturbation of the Gaussian models by
the vertex operators of weight (1,/2R?).
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(iii) The A“X0; 2 N) Toda models have no restriction for integrable perturbation
of WB models.

(iv) The number of fermionic fields in the C®?(N + 1), N > 2, Toda model is
two, therefore there is no obvious interpretation of the CP(N + 1) Toda as
perturbation of WB models. But if there exists a restriction strong enough to
identify the two fermions, then the restricted C®(N + 1) Toda models will be
interpretable as a perturbation by the relevant field [(1;-)® (L;-)/(L + 1; 0)]
with conformal weight A =(L + N)/(L +2N).

We stress once more that as in the case of the simply laced algebras the
connection between the perturbed WB models and the minimal Toda models on
superalgebras is expected to hold only for L = 1. For L > 1 the perturbed WB
models are related to generalizations of the Toda models.

7. Other groups: conjectured S matrices of the SU(N) cosets

To show how the S matrices of the SU(2) cosets generalize for larger algebras,
let us give the conjectured S matrices for the SU(N) cosets: SU(N), ®
SU(N), /SU(N)g, ;- The generalization to other groups will be clear. Because of
the invariance under the two nonlocal conserved charges Q%) and Q®, the S
matrices factorize into a tensorial product of two RSOS-like § matrices multiplied
by some CDD factors. To be more precise let us first introduce the highest weights
w,, n=1,...,r =N —1, of the fundamental representations R, of SU(N). Note
that the weights w, define integrable representations of SU(N)® at level one. In
the perturbed SU(N) cosets there are r families of kinks, which we denote by
(K,),n=1,...,r. For fixed n, all the kinks of the family (K,) have the same mass
M,

sin(nw/N)

M=M—; =1,...,N—1. 7.1
" sin(w/N) " 71

More generally, for the group G the mass spectrum is equivalent to the spectrum
of masses in the Toda (G) theory.
The kinks in (K,) are labeled by four highest weights of SU(N). A kink of

rapidity 0 is K ( Kby 2(0) where ag, by (resp. a;,b;) denote highest-weight

representations of SU(N M at level K (resp. L). A pair of weights (a — b) is said
to be m-admissible iff the representation b appears in the tensorial product
a ® R,,. Note that the multiplicity of a representation in (¢ ® R,,) is always one so
that we do not have to specify the SU(N) homomorphism defining the decomposi-
tion of (a ® R,,) into b. Only n- admissible pairs of (a — b) appear in the kinks of

the family (K,). The kinks K, Z
L
of two elementary kinks of the perturbed coset theory with one of the levels equal

to 1; or alternatively of an SU(N) RSOS statistical model.

) can be thought of as the tensorial product
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The S matrix for the kinks in the family (K,) and (K,,) is conjectured to be
Sum(0) = X, (8)S15)(8) ® STN(6) (7.2)

where SIXX(6) is (up to a scalar function) the trigonometric RSOS (w,; w,,)
Fmatrix with the quantum group parameter g = —exp(—imw/(K + h*)), where
h* =N. See e.g. ref. [47] for a precise definition. Following the diagrammatic
notation of ref. [6] the matrix elements of §,,,(8) for two kink scattering are

n m n
ag a
X,m(60) dy bg(8) -d, b (0). (7.3)
Cg Cy
X, (8) are the standard SU(N) CDD factors; see e.g. refs. [10,12,33,49].

Eq. (7.2) is the most natural generalization of the SU(2) cosets S-matrices.
Instead of giving a detailed proof of it (the details will be described elsewhere), we
will just offer three checks:

(i) For K (resp. L) =1, the RSOS S-matrix factors S'X! (resp. SU*1) are trivial,
i.e. are equal to 1. Thus when K =L =1, the § matrices §,,, reduce to the CDD
factors X,,,(8). This gives the known result [10-12,49]. In order to clarify a
confusion in the existing literature, we point out that the resulting r=N—1
particles are certainly not the particles corresponding to the r bosonic fields of the
SU(N) affine Toda theory. One should not be misled by the fact that the spectrum
of masses of the affine Toda fields is the same as the spectrum for the families of
kinks. For this special case the S-matrix can be alternatively derived simply from
this spectrum of masses and the bootstrap. Furthermore, as we will indicate below,
it is not even correct to identify these K =L =1 models as restrictions of SU(N)
affine Toda theory.

(ii) We can consider the theories in the limits considered in sect. 4 for SU(2).
For K =1, L — , the models we are discussing become the SU(N) WZW models
at level K =1 perturbed by the J%(z)J%(Z) operators. These are nothing but the
SU(N) Gross—Neveu models. This can be easily established by bosonization of the
Gross—Neveu models. (See e.g. ref. [48] and references therein for a study of
the Gross—Neveu models.) On the other hand when L — « the SU(N) trigono-
metric % matrices become the rational SU(N) &% matrices. Therefore the S
matrices (7.2) go into the known S matrices of the SU(N) Gross—Neveu models.
This result indicates that the perturbations of the cosets G, ® G, /G;,, can be
formulated as restrictions of a “deformed” Gross—Neveu model, rather than a
restriction of affine Toda theory. By “deformed” we refer to the fact that by
reintroducing a coupling 8 into the perturbed models, the symmetry G is broken
to the quantum group %q(G), in complete analogy to the results in sect. 4. These
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new models will be further described elsewhere [19]. We present here (7.4) the
action for these models for the case of SU(N):

S= bl—zfdzz[az¢'6z¢+m2 h cos(a‘/'; H, (7.4)
a>0

where a is a positive root of SU(N); ¢ is a field valued in the Cartan subalgebra
and B is a coupling constant. Note that this action is hermitian, unlike the action
for the affine Toda theory. The above action (7.4) can be derived at the SU(N)
invariant point by inserting the bosonized form of the Kac—-Moody currents (see
the vertex operator constructions at level 1 in refs. [14-16] into the action (4.1).
Following the reasoning above for SU(2), the S-matrices for the SU(N) deformed
Gross—Neveu models are conjectured to be

5(8) pm =X Sum(0) ,

where X, are the standard CDD factors used above, and S, are proportional to
(up to scalar factors required for unitarity) the trigonometric vertex-type F#matrices
of the quantum group SU_(N) acting in the tensor product (w, ® w,,). In other
words this S-matrix is the unrestricted form of eq. (7.2) for one of the levels K or
L equal to 1.

(iii) Following the reasoning in sect. 4 for the SU(2) case, when K — o, L. — oo,
the perturbed SU(N) coset models become the SU(N) principle chiral models.
On the other hand, as explained above, the trigonometric SU(N) S matrices go
into the rational SU(N) % matrices. Therefore in that limit, the S matrices (7.2)
become a tensorial product of two SU(N) rational .%matrices times the CDD
factors. These are the S matrices of the SU(N) nonlinear sigma models found in
ref. [33].

8. Conclusions

We have identified the main features of a classification of integrable massive
quantum field theory that parallels the classification of rational CFT. We can
summarize our strategy as follows. We consider the generalized FF fields as the
field content of an integrable field theory and its (fractional) super generalizations.
Then we restrict this soliton theory to obtain a minimal series. The general
scheme, along with connections to other models, is better summarized by the
diagram in fig. 1. The simplest realization of this pattern is for the K =1 series
which involve deformed Gross—Neveu models. Having provided the structure of
the perturbed coset models, we may now proceed to “unrestrict” these models as
we have done for some specific cases above. In general one thereby deduces the
exact soliton spectrum and S matrices of some new integrable QFTs. We will defer
the complete formulation to a future publication [19].
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Perturbed Ok ® Gr
models Gy,

L—>wx mass — 0

Minimal
Coset CFTs
WZW +JT {

F.F.
construction

Restriction

Free Bosons
+ Parafermions

break

G invariance /

mass — 0

PCM

(Fractional)
Soliton QFTs

Fig. 1. Integrable massive QFTs and their relations.

Our results may be of interest for applications to condensed matter theory. We
have indirectly demonstrated the existence of fractional Lorentz-spin excitations in
a variety of hamiltonian spin systems in one spatial dimension. For example, the
fractional supersymmetries we found in the current-current perturbations of the
WZW models can be taken as evidence that the higher su(2)-spin Heisenberg
chains do in fact have fractional Lorentz-spin quasi-particles.

An interesting question is whether the fractional supersymmetries have a classi-
cal analog. We do not have a definite answer to this question. However, in the
appendix we give an example of such a classical symmetry by constructing a
fractional superspace.

It is a pleasure to thank I. Affleck, D. Altschuler, G. Felder, Z. Hlousek,
P. Mathieu, V. Pasquier, N.Yu. Reshetikhin, and J.-B. Zuber for discussions. This
work was supported in part by the National Science Foundation.
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Note added in proof

N. Reshetikhin has informed us that he and Bazhanov intend to publish their
work on apparently related spin chains (referred to above) in the near future.

Appendix A

CLASSICAL FRACTIONAL SUPERSYMMETRY

The formulation of supersymmetric field theories is simplified by the introduc-
tion of a superspace. Remarkably, there exists a generalization to a fractional
superspace. We will present this formalism here, deferring a discussion of its utility
to a future publication. For the RSG theories at level L, define M =(L +2)/2. It
was argued [6] that the fractional supersymmetries satisfy the algebra

Q¥=pP*, QM=pP, (A.1)

where P* are light-cone components of momentum. Introduce variables z, 6, z, 8,
and a complex parameter g satisfying

oM=9"=0, gM=1. (A2)
We define a derivative 9, such that
3y 0 =0,(0) + g0, (A3)

with 9,(8) = 1. This derivative has the desirable property that 9,(6™)=0. In
general

1-4"
3,(0™) = 1—_(10"‘1. (A4)

The derivative is not the unique one satisfying 9,(™) = 0. There are in fact M — 1
of them. Here we will only need one other, denoted §,, satisfying

8,°0=25,(0) +q‘1089. (A5)
We find

1 _
80(0’1) = '1‘?0"—1 .

It is not difficult to prove that

840, — q0,8,=0. (A.6)
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One can find a representation of the algebra (A.1) on the fractional superspace:
M=2 1 _ gi+! -1

Q= 88 +afM- 182 y a= 1—!) —17 . (A7)
iz

Q satisfies
oM=9,. (A.8)

A covariant derivative satisfying
DQ—-qQD=0 (A9)
can be constructed using the other derivative

D=35,+qad™ 19 . (A.10)

Define integrals as
[doem=5, 4,
An example of an action with the fractional supersymmetry is
S= fdzzd2eDd>z_)q:>,

where @ is a fractional superfield ®(x, 8, 8) = ¢(x) + 0,(x) + 02,(x) + ... .
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