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[. INTRODUCTION smallR [22,23, which can provide a nontrivial test for ti&
matrix in Refs.[24,25. On the other hand, reflection ampli-

The vacuum expectation valué¥EVs) of local fields tudes were also used to calculate the exact VEVs for all dual
play an important role in quantum field theof@FT) and  pairs of nonsimply laced ATFTEL9].
statistical mechanidsl,2]. In QFT defined as perturbed con-  However, to support the exact VEVs, it is desirable to
formal field theory(CFT), they constitute the basic ingredi- check with various methods since the “reflection relations”
ents for multipoint correlation functions, using short-distancemethod hasno rigorous mathematical proof. For simplest
expansions[2,3]. Recently, important progress has beencases such as sinh-Gordon and Bullough-Dodd, the exact
made in the calculations of the VEVs in two-dimensional VEVs have been checked both nonperturbatively and pertur-
integrable QFT. In Ref[4], an explicit expression for the batively[4,7,26,27. The purpose of this paper is to check the
VEVs of the exponential field in the sine-Gordon and sinh-conjectured VEVs of ATFTs using perturbation theory up to
Gordon models-A{") affine Toda field theoryATFT)—was  two-loop level. In Sec. II, we review some basic facts about
proposed. Moreover, it was shown in RE5] that this ex- ATFTs and the axiomatic equations satisfied by the VEVs
pression can be obtained as the minimal solution of certaitvhich lead to the exact solutions given in REf9]. Pertur-
“reflection relations” which involve the Liouville “reflection  bative analysis follows in Sec. Ill where we compute VEVs
amplitude”[6], where the sinh-Gordon QFT was consideredof scalar fields up to one-loop and some composite operators
as a perturbed Liouville conformal field theory. Subse-up to two loops.
quently, this “reflection relations” method was successfully
generalized to other models, for which the VEVs were cal-
culated. We refer the reader to Reffg—11] for details. [l. EXACT VACUUM EXPECTATION VALUES

It is thus natural to study the case of dual pairs of non- IN AFFINE TODA FIELD THEORIES

simply laced ATFTs, as well as the simply laced one which Let us first recall some known results about ATFTs which

h?‘d been previously conS|der[=.’t12]..In a_lddltlon.to the tech-. are relevant in further analysis. The ATFT with real coupling
nical aspect, such VEVs can provide interesting information

as this class of models appears in various physics contexfscorresponding to the affine Lie algebiGiis generally de-
[13—-16. These include special case of 3D(1) or Xy  Scribed by the action in Euclidean space:
model[12], VEV of the spin fieldo in the Z,-Ising models
[17] perturbed by the leading thermal operator, asymptotics
of the cylindrically symmetric solutions of the classical Toda A= f d2x
equations. More recently, exact off-shell results for coupled
minimal models were considered in RELS].
ATFTs can be considered as perturbed Toda field theories
(TFTs). In Ref.[19] the “reflection amplitudes” for all non-  where{e}e ®(i=1,...r) is the set of simple roots & of
simply laced TFTs were proposed as well as the exact relaankr and — e, is a maximal root satisfying
tion between the masses of the particles and the parameters
in the ATFT action. On the one hand, reflection amplitudes
are the main objects which can be used for studying the UV '
asymptotics of the ground state ener§yR) [or effective eo+__21 nie=0. (2.2
central charge(R)] for the system on the circle of siz "
[6,20,21,19. This result agrees well with the TBAresultat —

1 r
— 2 E bei- ¢
a7 (Iu®) +i:0 e , 2.9

Throughout the paper, we denote an untwisted algebré,as
*Present address: Department of Physics, Seoul National Univewhile G refers to a twisted one. Furthermoggdenotes a finite Lie
sity, 151-742, Seoul, Korea. algebra.
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The fields in Eq(2.1) are normalized such that Va(x)=Rs(8)Vg+3a—q)(X), (2.9

{(@a(X)@p(y))=— 8aplogx—y|?. (2.3  whereRgy(a) is called the “reflection amplitude,” an impor-
_ _ o tant object in CFT which defines the two-point functions of
Since all potential terms in simply laced case have the samge operatol/,. In Ref.[19] the following expression for the

conformal dimensions, they all renormalize in the same wayreflection amplitudéRs(a) for nonsimply laced TFT was ob-
It is then sufficient to introduce one scale paranfefefin  tained:

action(2.1). However, for the nonsimply laced ca&xcept

BC, =A%) —r=2— affine Lie algebra in which case three Re(a) = Asip 2.10
different parameters are necessamg have to introduce two s Aip’ ’
different parameterdone is associated with the set of stan-

dard roots of lengthle|?=2 and is denoted byuie=pu where

whereas the other, denoted by, =u', is associated with r .

the set of nonstandard roots of lenge|?=12+2. AiPEA(P):il:[l [ e y(efb?2)] PP
In the presence of background charge, the ATFTs can be

considereds CFTs perturbed bye®®¢. The background

charge is given by XLIO ['(1-iP-ab)I'(1—iP-a"/b)
Q=bp+ lpu (2.4 with Eg. (2.9), the fundamental coweights;’ and we denote
b™ "’ ' y(X)=T(x)/T'(1—x) as usual. We accept E(R.10 as the

. _ - ) proper analytical continuation of the functi®(a) for all a.
wherep=33 ,.oa andp =33 ,-oa" are, respectively, the Forg <)), the subset of Weyl group elements associated
Weyl and dual Weyl vector of. The sums in their defini- \yith the simple roots , notice that the ratic\(3P)/A(P)

tion% run over all positive rootgaj e @, , dual roots{a”}  reduce to the reflection amplitud® (g ,P) of the Liouville
e®y . Then, the stress-energy tensbfz), wherez=X; field theory[6]:

+ix,, Z=Xx;—ix, are complex coordinates &,

A(5P) S.(e.P)
1 AP &
T(2)=-5(0:0)+Q 2 25 (P
= [mpse, y(€€022)] P47
ensures the local conformal invariance of the TFT. The cor-
responding central charges were calculated in R&]. De- ><1“(1+iP- qb)F(1+iP«e«,D/b) 01
fining a=(a4,...,a,), the exponential fields F(l—iP-ab)F(l—iP-e,D/b)' (211
Va(X)=expa- ¢)(x) (2.6) Then, as ATFTs can be realized as CFTs perturbed by
) ) ] o ) some relevant operatof83], in the conformal perturbation
are spinless conformal primary fields with dimensions theory(CPT) approach one can formally rewrite ahypoint
P (a-0) correlation functions of local operato€3,(x) as
A@=o——5 2.7 (Oa,(X1) - Oq (Xn) ) ATFT
By analogy with the Liouville field theonyf29,30,§ the =Zil()\)<0al(xl)"'OaN(XN)87Afdzx{bper£X)>TFT

physical space of statgg in the TFTs consists of the con-
tinuum variety of primary states associated with the expoWhere
nential fields(2.6) and their conformal descendents with Z()\)=<e*)‘fdzx‘bpert(x>>TFT,

a=iP+Q and PeR". (2.9 ® et is the perturbing local field) is the CPT expansion

- . . arameter which characterizes the strength of the perturba-
In addition to the conformal invariance TFTs possess arﬁ 9 P

extended symmetry generated W§(G) algebra[31,32, In- on and({---)ter denotes the expectation value in the TFT.

. - : Whereas vertex operatoi®.6) satisfy reflection relations
deed, for any arbitrary Weyl group elemést v the fields 5 o) i the CFT, the CPT framework providesimilar rela-
Vaisa-g)(X) are reflection images of each other and ar ’

Pied bv the li f o= Sions among their expectation values in the perturbed case. In
related by the linear transtormation: other words, if dots stands for any local insertion one has

(Va(X) (- = ))1er=Ra(@)(Vo+sa- (X)) 1ET-
(2.1

2For the sinh-Gordon model{) ATFT) . is generally called the
cosmological constant.

3We choose the convention that the length squared of the long
roots are 4 forCﬁl) and 2 for the other untwisted algebras. 4At the moment, there is no rigorous proof of this assumption.
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Then, if we define the one-point functid(a) as the VEV £, 1d(B{M)]=L£,[P(B,)® n=ey= — (€11 €,)],
of the vertex operatoV (x) for nonsimply laced ATFT by

E‘Cfb[q—)s([)r)@ n=—¢€1;

G(a)=(expa- ¢)(X))rer- (213
L[ D(CH)]=Ly[P(C)) & p=6r=—2¢4],

one can formally rewrite this expresstoas -
=L p[P(C))® p=—2¢];

(=N o L[ P(FP) =L [P(F4)® n=6y=— €1~ €],
(ea'(P(X))ATFT:Z_l()\)EO ( n!) fj];[l d2y,—(e""'¢(x) b 4 b 4)ON=8& €17 €2
Xebeo-qa(yl)...ebeo-qa(yn)>TFT_ (2.19 ., 55(84)@ —— £(€1—62—63—64) ;

2

Indeed, using Eq(2.12 one expects that similar relations

hold for G(a). If this VEV satisfies the system of functional Lo[®«(G5")1=Ly[ @G @ n=6y= —V2€1],
equations associated withs then it also automatically sat-

isfies more complicated reflection relations. Furthermore, as —,

was shown in previous workd 4,15, ATFTs can be under- =L_o[DL(Ay)® = 12/3¢,],
stood as different perturbation of TFTs. The simplest cas
(beyond the sinh-Gordon modeis the Bullough-Dodd
model which can be understood alternativERy} as a per-
turbed Liouville CFT with coupling constabtor a perturbed
Liouville CFT with coupling constant-b/2. Here one can
proceed similarly. We denot®(G) as the set of simple
roots of the finite Lie algebrg, » the extra root associated
with the perturbation ande;} an orthogonal basise(: € G(ra)=S. (g ,P)G{7[Q+5§(a—Q)]} for all §eW;,
=§;) in R'. Each one of the ATFT Lagrangian representa- .15
tion, denotedl,[P(G)], associated withd(G) and the :
coupling constanb can be rewritten in two different ways: where

Svhere the different sets of simple roots are reported in Ap-
pendix B. Using Eq(2.12 implies that the VEM2.13 must
satisfy simultaneousiytwo irreducible systems of functional
equations corresponding to two different se¥s. It results
that G(a) obeys the functional equations

BI(.l):(T)ij:(Sij for QEBr and (T)ij:_(sil’+l*j for gEDr,

C(r1)3(7')ij:5ij and (7)j=— &y +1-; for G=C;;

Fal):(T)ijzéij for gEF4 and (T)ij:5ij(52j+53j+54j_51j) for gEB4,

Gy :(7)j=8; for G=G, and ();;=— 8 3_; for G=A,,

with coupling constanib. Notice that by simply looking at the Dynkin diagram symmetr)B{ﬁ) andCﬁl) (see Fig. 1one can
also differently deduce

SIn fact, the integrals in Ec(2.14) are highly infrared divergent. By analogy with the situation appearing in the perturbed Liouville QFT
[7], one can get around this infrared problem by considering a 2D world sheédpologically equivalent to a sphere equipped by a
background metrig, ,(X) =p(X)d,,. Then the terme(y,) which appear in the integrals analogous to those in (Ed.4 provide an
efficient infrared cutoff. We report the reader to Réf] for details.
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G(ay,ay,....2,-1,8,)=G(—ay,a,,...,a,_1,a,) forBY;

G(aj,ay,....3,-1,8)=G(—a;,—a,_1,...,—a,—a,) for CV. (2.16

The reflection relation§2.15 (or, equivalently the relations massg relations in the “minimal” solutiofi of the func-

(2.16 for B and C!Y) constituted the starting point in tional equations(2.15, the following exact expression for

deriving the expectation value(a). Following previous the VEVs(2.13 was proposed19]:

works, we also assumed th@t(a) is a meromorphic func-

tion of a. _ a2
Furthermore, for real coupling constant the spectrum G(=[mk(G)x(9)]

for any dual pair of nonsimply laced ATFT consists of

particles with the massed, (a=1,...r) expressed in terms

of the mass parameten. These spectra are reported in Ap-

pendix A. The exact relation between the parameters of the

actionu andu’ and the masses associated with the spectrum

of the physical particles was obtained in Ref9] using the

Bethe ansatz metho@ee, for example, Ref$34,35). We

report the reader td19] for details. By replacing these with

pwy(1+b?) ]4-ai-B)/Hb
/.L"y(1+b2|2/2)}

(= mpy(1+b%)
— 7w’ y(1+b?1%/2)

}d-aB/Hb

X exp fow$[a2e-2t—f(a,t)]. (217

s 25
sinh(a,bt)sinh{[a,b—2Q, b+ H(1+b?)]t}sin +1]t

2
Hat)= 2 b2|a|2
a0 sinm)sinr( 5 t)sinr[H(1+ b2)t]
|
where we denote,=a- « and Similarly, it is straightforward to obtain the VEVs of an
ATFT based on a twisted affine Lie algeld. The reflec-
ph™— ph tion amplitude_s corresponding to the TFT, i.e.., the conformal
d= T part were easily obtained from E.10 by using the dual-

ity relation for the parameteyse and,ugI associated with the
dual pairs of ATFT19]:

The expression&(G) and «(G) can be found in Ref[19].
Here, it is convenient to introduce the “deformed” Coxeter
number[24,25 bze,z)

e,DZ b2e?i2
%Y(T %2” &0

0
TieY
2

—h(1_ o i -
H=h(1-B)+h"B with B 1+b?’ (218 and the changb— 1/b. Each one of the Lagrangian associ-

ated withG” can be written in two different ways. In any

case, the resulting system of functional equations which has

to be satisfied by the VEV is nothing else than the dual of

Eqg.(2.195. To express the corresponding solution in terms of

the mass of the physical particles, the mas®lations in the

@ Q—H(b+1b)<Rea a)<a-Q for all aed twisted casg19] are used. Finally, the result for the VEV
(2.19 G(a) for all twisted affine Lie algebras is obtained from Eq.

(2.17 with the changéh— 1/b.

and is defined through analytic continuation outside this do-

main. The particular case of ER.17) corresponds to the

simply laced one for which the result is in perfect agreement SNotice that the prefactor which was given in REf9] was pre-
with Ref.[12]. sented in a slightly different, but equivalent, form.

whereh(h") is the Coxetefdual Coxeternumber ofG(G").
The integral in Eq(2.17) is convergent if
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It is similarly straightforward to study th&C,=A% Ill. PERTURBATIVE CHECKS

(self-dua) remaining case which was considered in Ref. To su
. ) pport the resul2.17) of Ref.[19] beyond the non-
([136].' N?rt:cebtr?stfthe expectau??hvak_%Tl.?) can be used to perturbative checkprovided by the bulk free energy calcu-
erive he bulk free energy ot the ' lation), we present here a perturbative check. We expand the
1 vacuum expectation valug.17) in power series irb and
fg=—Iim vln Z, (2.21)  compare each coefficient with the one obtained from stan-
dard Feynman perturbation theory associated with(Ed).

. ) In the first part of this section, we consider the VEV of the
whereV is the volume of the 2D space adds the singular g (¢) which is given by

part of the partition function associated with acti@al). For

V—oo

specific valuese b{e}, with {g} e 4 (i=1,...r) or g, the S
integral in Eq.(2.17) can be evaluated explicitly. Using the (o)= 5@ - (3.9
exact masgz relations and the obvious relations a=0
Since the result renders the same conclusion for all ATFTS,
a,f(u)=> (59 or 4, f(u)=2 (e %), we chooseDM series as illustrative examples and omit the
i} {i" (2.22 details for other simply laced caséa!™) case is trivial as

seen shortly. It also provides a useful step to the calculation

where{i} and{i'} denote, respectively, the whole set of long of B™") series which is obtained fro@{") through folding
and short roots, the following bulk free energy was obtainedrocedure. Finally we present the result of an exceptional

[19]: algebraGS.
_ In a second part, as an additional check we also consider
frm m? sin(7/H) the “fully connected” composite operator expectation value
9= 8 sinwB/H)sin m(1—B)/H]’ of (¢*¢”) defined by
A 1 6°InG(a)
—_p® (1 o — _
g=8," and C;, (e "N=(") (NP =5 —ms
a=0
- m? cog m(1/3— 1H)] (3.2
g: . . y
16 cogm/6)sin(wB/H)sin m(1—B)/H] Since these quantities are quite complicated to calculate per-
. D D turbatively, we will content ourselves with considering only
G=G;’ and Fy some simple combinations of them up to two loopsB§P,,
(1) (1)
and similarly with the chang—(1—B) for (B, ~ C2'» andG;” cases.
(CE (G0, and FM)E. In particular, these results .
were in perfect agreement with the values obtained using the A. Perturbative checks of{¢)
Bethe ansatz approa¢h9. Using Egs.(2.17) and(3.1) one finds the result
|
d wy(1+b?) d )
<(,D>— mm[m +B%(| 2—1)In[ —7uy(1+b%)]
: [ b?al?
. sinh{[2a- Qb—H(1+b?)]t}sin > Tt
0 a>0 . . 2 . b |a|
sinh(t)sinH(1+b%)t]sin 5 t
|
To proceed furthef,we expand¢) order by order irb and For the simply laced case, this expression is drastically
write the result as simplified:
1 - P
(¢)=p K+bL+O(b?). @y Ko el 7( h )
= cotht
L= —f dt.—h() > asinf(h—2a-p)t]}.
o  sinhtht) | &0
"However, notice thaf¢)=0 identically for AY) series since
u'=pu, 1?=2 andX .. oasin{(2a- Q—hQ)bt]=0 [37,12. (3.5
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0 1 2 r-2 r-1 r

FIG. 1. Automorphisms associated with the Dynkin diagafh andC!? corresponding to Eq2.16).

Let us introduce the component notatiih=¢ - and £; o-e=kK;. (3.9
= q . E'

For theD(Y series, the nonperturbative results are givenThis identity provides the amusing relations among #e)
as functions, wherx is related to Lie algebra quantity, which is

observed for general case in Ref$2,19
4 One-loop perturbative calculation is conveniently done
Ki=K,_1=K,=— ( 1— ﬁ) In2; (3.6)  using the classical mass eigenstate represent2isin D"
series representation is given by

e gL [5(1)+§<2) §(1+1) 5(1” e=(—15,-1%...~177210), 3.9
1= ,r-1= A= 51 h hl ST RIS 9]
r - 2nltih " 2.h 2 =l — 112 =12, 23=11720,0
&= (li-1—liolk-a=lio - h=1— 1 5,0,0)
whereh=2r—2 and fork=2,3,...r —2 we have for
4 k=2,..r—2,
Ky=In2—|{1-+~]In2; (3.7
h _ /1 2 r-2pn
&_1=(1 o7 5. 1123,0-1),
1 1 k 1 k-1 k k—1 1 2 r—2
Sl ™! IS Y el R I Y [ e=(:_,I17_,...1.250,1)
F Zh[ E<2+h) §(2+ h ) g(h) g( h ) e
k2 k1 oK wherel2=(2/\/h)sin(2aka/h).
+§( _) +2§(_) +§<_”, The next-to leading order term, i.e., the field expectation
h h h value to the one-loop orddfp), is given by tadpole dia-

grams which in general needs to be appropriately regular-
where we defing(x) =¥ (x)+W¥(1—x) in terms of the di- ized. The perturbative result is, however, finite for the mass
gamma function? (x) =d In T'(x)/dx. eigenstate representation, and does not depend on the regu-
Perturbative analysis of the acti¢2.1) begins with shift- larization scheme foDﬁl) series(and in general for simply
iNg ¢— ¢¢+ ¢ such thate,, satisfies the minimum of the laced cases
ATFT potential. This classical solution reproduces exactly ~To distinguish from the component notatias,, which is
the leading term in Eq(3.4): obtained from the proposed VEV, the perturbative mass
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eigenstate component is denoted ®&S. If the values are ®° vanishes wher=r—1,r andc=odd<r—2,
correct, then the relation between these two quantities should (0%,=0 (3.10
be ;=P whereg] is thecth component of the mass b :
eigenstate representatien. and otherwise
<P Dy =5
=- Z2 In (422) Z ln(4Z ) (3.19)
\/EZC

whereZ,=sin(am/h). The divergent terms cancel each other\yhere y.=0.5772...
and the total contribution remains finite.
With the help of various relations of the digamma func-

is Euler’'s number.
The explicit value forB{*) series takes the form

tion and trigonometric function one can prove th@s in 2 (2u'
Egs. (3.6) and (3.7) coincide with the ones in Eq3.11). Ki=rIn o —In2; (3.19
Considering this as a nontrivial check, one can view this as a
useful identity between digamma functions and trigonomet- 2 (2u
ric functions Kk:—ln(—), k=2,3,..1—1;

r—2 h M

bli= > (D). (3.12
c=even

For example, we have far=1,

and
! 2 11 - L —1 + T+ ATy 3.1
fﬁ+5(ﬁ DY 1R SRt AL (319
r—2 oo _ 1 1 _
= > 8005( h)(smz( ) 4sinz<—” L=\ g) It Lt AL
c=even 2h
K =—j+I +AZ, k=23,..r—1,
—cosz( In 4co§( ) ] (3.13 “h “ “ '
where
For the nonsimply laced case, the situation becomes more i 2 [(u
involved. By expanding Eq(3.3), one finds the following J=| 2yetIn(mub?) + H|n<ﬂ” (3.19
coefficients:
and
_d [ 2u ap 1 1 1) (1
K_Hln(W)_go “D'”( h ) 12%[5 ) 5(2 h ‘5(5)];
_df(1? | 214 (h— hO)| 2#) ot 1\
L=11| 7712yt In(mub?) ]+ (h—h")In 2 T 2§ —& 30
” 1 , 1( [2k=2 2k—1 2k k
- J; g oo 3, eson—zaet) e 2 )* {55 TR
__Zo a"a-(hp—h"p”)costi(h—2a- pD)t]} g(kh—l) (1 k= 1) ¢ ?E) . 31
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Note thatZ,’'s (k=1,...r—1) are identical toL,’s in Eq.
(3.7) for DY), series.AT’s are given by

AT =AT,= ey | —2¢ =) +a¢| 2| ~2¢ 5+ 2| |
T I Y R N e PR
(3.18
M=oy | (- ke 272 4 ake] 2X) - 2k €
L=z (4= 4K gl —— | Haké| | —2ké| ¢
ok—2)e | 4 (2k—2yel 2+ XL
+H(2k=2)¢| |+ (2k=2)¢| 5+ ——
2k !
B Pk
and turn out to be identical to each other:
4
AL =AL=AL =72, (3.19

As noted for the simply laced cask, is identified with
the classical value,, . For B{*) series

)
He,

MmN
Me

l r
be- ¢y =In _HE n; In . (3.20
i=0

which agrees withC in Eq. (3.14).

PHYSICAL REVIEW D 64 046002

<(Dr>b:O;

b
¢, =———09g,Z,. Wwhen c=odd<r—1.0;
< >b 4\/HZ§ Or 2c

b
(D)=~ —==5{4Z(9c12Z% Un-cy2Zin—cya) T 9r Zach
4\/HZ§ c c

when c=evensr—1, (3.22
whereZ,=sin(@n/h) as is given in Eq(3.11). g, is the Eu-
clidean integration of the tadpole diagram

[ dk 1 -
9= | 2m? i@+ m?’ (3.23
wherem, is the physical mass equivalentltb, in Appendix
A up to this order ofb?. Its explicit value is given bym,
=2mgsin(ma/h) for a=1,2,..r—1 and m,=m, with mj
:22+2/h(ﬂ_Mb2)(M1/M)2/h.

Here, to evaluate the one-loop diagram we are using the
normal ordering with respect to the free field theory. In this
schemeay, is given by

1 2

_ |ma22 _
9a= | 5| T2l

m 2
—2 +ZIn2

J+In =

Mo
(3.29

Then, using the identity

e ot 572

h h 2h’

c=even

53

Beyond the classical result, however, renormalization

should be carefully incorporated unlike in the simply laced

case. The classical mass eigenstate representatiBhl)ofs
obtained by folding the one dd{Y, (3.9,

e=(—11,—1%,...—15"11)

for
k=2,...r—1,

e=(1,1%2,,..1'""10 (3.21)

from which we obtain the one-loop contributid),, :

k=1,..r—1, (3.2

we find that the7 parts of Eq.(3.22 agree exactly with
those of Eq(3.15, i.e.,

bL; | J-part_ ; Qc<q)c>b| J—part:

Furthermore, since the term m{/my)? in Eq. (3.24 repro-
ducesZy’s which are the same a§’s in Eq. (3.7) of the
D), series fork=1,..r—1, the agreement3.12 in the
D™ case immediately implies

bL; |I. part— ; Qc<q)c>b| T-part-

Finally, AZ, terms come from the last term {@in 2 in Eq.
(3.24). This establishes the exact agreement between the per-
turbative and nonperturbative results for g’ case.
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For the exceptional algeb@$?, we have

B. Perturbative checks of the composite operatorge,¢p)

1 I 1 . From the expressiof2.17) and using Eq(3.2) we have
Klzln(&u T2Iny| g —4n y(3)’ the VEV of composite operator
\ GabE a b

K== il 2| <in o £] 42 1ny| 2. e

2:—§n@—n7’g ny\3) X ,

=-& 2 H(Hbz In[ = 7puq y(1+ b?€f12)]
Ih2

=— 2 mH'D } g . fmﬂ ba—2t__ rab

Ly 5 4ye+In (7T,ub)( 3 ]+2In3+gln2, + .1 [ 6% Fo,
where

- L] ()| T2 n2— 1

Lo==3|2vet 5In (mub?)| —3 —gh2-7ln3. ]_-ab:bztzzo oPab
a>
(3.26

On the other hand, the corresponding one-loop diagram is

given by

sini (1+b?a?/2)t]cosH[(1+b?)H—2ba- Q]t}
sinh(t)sinh(b%a?t/2)sint (1+ b?)Ht]

(3.29

- - These are in general rather complicated quantities to calcu-
late perturbatively due to various divergences to be taken
1 care of up to some finite part. For some combinations such as
the relative value of the composite operat®f?—G' (a

< ®! Sy = (3.27 =1,..r—1), however, the propagators are renormalized

and

<P >y

with an overall renormalization constant and therefore, most
of the complications due to the renormalization scheme dis-
appears. Therefore, such quantities provides an additional
3 1 . independent check of the nonperturbative result in a simple
way. Since the perturbative calculation is done in the classi-
cal mass eigenstate representation, in this section we will use
the mass eigenstate representationdan Eq. (3.29.

2 1 ForC{V, the composite operator value is given by
G12:0.
= +
TR J'mdt bt sinh(1+b?)t[4 costi4+8b%)t— 4]
0 sinht sinhb?t sinh(4+ 6b?)t
i 2 2
(3.29 =In2+b?(0.7922 .. .) +O(b%). (3.30

After explicit calculations as in the previous case, we findThe corresponding value is confirmed perturbatively:
(®?)p=bLy and(®'),= 3L, + L, which completes the per- ((d1d2))=0 since there is no vertex at all for this case. The
turbative check foiGS". other one is given by

<L PPt — P2P? >>

QQ@ )

=In2 4 4%(0.79221...) + O(b*)

(3.3
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whose Feynman integration is done in Appendix C. This 1 as b?2t2 sinH (1+b?)t]
agrees with the nonperturbative resuf#s30. Fr=F = SinM(0sin[(6+5b9t] | sinh(b2)
For the cas@{", the nonperturbative result gives
X {—cosl (4+3b?)t]+ 2 coshib?t)
sinH (1+b2/2)t]
12_ ~23_Q- _ 2
G G 0: cosh (2+b)t]}+ 2 sin(bZ/2)
x {cosh (4+4b?)t]+cosh (2+ bz)t]—Z}];
Gll_ G33: _ Zjoodt (fll_ j_"33)
ot
b%t? sini (1+b?)t]
_h2 4y. 22_ 783_
=b%(=0.19535 .. .)+ O(b’); Frr sinr(t)sinr[(6+5b2)t]k sinh(bZ)
X {cosH (4+3b?)t]—cosh(2+b?)t]}
= dt ; 2
G2—G33= _Zf — (F2— sinf (1+b*/2)t] )
o t 2 Sinhb2) {cosh (4+4b)t]

=—In3+b%(—0.32152 ...)+O(b%), (3.32
+cosh (2+ bz)t]Z}].

where The perturbative calculation gives the res({tbld3))
=({(P2®3))=0 since there is no vertex at all in this case.
The relative values of the composite operators are

1 1 3
sy - Q@@
1731 181

3 3 3
_ +m+/—2\ + O(b*)

— 52(—0.195326...) + O(b") ; (333

Y

L P2P2 — P33 >> = +

3 3 3
- + m + m + O(bY)
\:Dd, M
= —In3 +b*(—0.321552...) + O(b*) (3.34
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which exactly reproduces E¢B.32. Finally, the relative value of the composite operators
A similar check can be done f@$").G*?is not vanishing
but is given by w0 dt
N e
1 sinh(t)sin + t
G12:_‘f3b22 (201+a2)'a(al'a) i
a>0

X {sini (1+b?)t][cosh 2t)

tsini (1+b*a?/2)t]cosh (1+b%)H—2ba- Q]t — cosh4t+2b2t)]}
f sinh(t)sinh(b%a?t/2)sint (1+ b?)Ht]

_ 2 2b%t
2 +sin t+? 2 cos T
= —b?(0.04883% .. .)+ O(b% (3.35
V3 2
whose value is also obtained from the perturbative diagram —cos)’( 4t + 3 )—
’ 1
1 r(2t+ 4b2t”
cos —
<L210% 55 =5 x +0O@0Y). 3
1 2
17572 = Eln 3+ §b2(0.18316 ) +0O(bY (3.37
(3.3

is reproduced by the following perturbative diagrams:

1 1 1
(< BIPY — 2B2D > — ©+@+;x@
i 1751 X7 |
2 2 1
O e o
2 2 2 2

(3.38

It is straightforward to generalize the above perturbative calsimply laced case get quantum correctif?4,25. The mass
culation to other remaining cases and to confirm the prospectrum for the dual cases remains the same with the
posed VEV. changeb— 1/b, where the mass spectrum depends only on
one parametem:
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In contrast to the simply laced case for which the mass Mz=2mcog§ m(1/6—1H)], M;=2M,cogn/H).
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For nonsimply laced Lie algebras, the Coxeter and dual Cox- {PLDI—D2D2)),
eter numbers are
(a2 d?pe [ 32, 161 1
et =hici) =2r, - Migo=hag  =2r =1, O] G\ iz et
h(c§1>)D= hD£2+)1=2(r+1), =0.79224 ..., (C2
where

h,:£11>=12, h(,:21>)u=9, hG(21>=6, h(G<21>)u=hD£13>=4.

APPENDIX B: NOTATIONS _f d’ke 1 1
1) (2m)2 (K2+M,)? (ket+pp)?+ M2
q)s(AZ):\/iéz, \/3/261_1/\/262; L dx .
(DS(BT):Ei_Ei+11 1$i$r_l, €, = OE_X(l_X)pé'i'(l_X)MIZ-FXM]Z (C3)
PYC=€—€s1, Isisr—1, 2e; The Feynman integratior(8.33 and(3.34 of the next-to

leading order foBS" are given by
O (D))=€—€ 1, 1<i=sr—1, e€+e€_q;

_ - 1 L (@0 -0%%),
O(F)=€—€r1, 1€{2,3 €, 5(61—62_63_54),

, [ 9P [(Iag+2115)  (2133+215y
:(477) (2 )2 2+M2)2_ 2+M2 2
q)S(Gz):\/TSE'g, l/\/iel—\/3_/262; T (pE 1 (pE 3)
=-0.19535. ..,

and

BLC)=DC)lee i1 i BADI=DD,], . G e E

r+1-i’

_ _(4m)? d’pe (gt 11219159 (2115312159
DYA2) =P (Aol ey; ) 2gp?| T (pErMEZ (pEr M2
DB =PyBl (e, ici2ad- = 032158 €4
The Feynman integration8.36) and(3.38 of the next-to
APPENDIX C: FEYNMAN INTEGRALS leading order forG(zl) are evaluated respectively as
The Feynman integration foE$" in Eq. (3.31) is pre- 2 [ d?pe

|
sented as the following. The lowest order diagrdovsler of {(DID2)),=(4m)2 (PE W i)l(lpéJr Mg))

2
bO) are represented as the Feynman integration v3J) (2m)

q)lq)l CI)Z(I)Z =—4 deE 1 1 = 3 X 0.048831
(€ 0= =47 | oy | 2 m? p2e M3 V3
M3 Pl Dp?
=In—s=In2, (C1) N Mo
M3 4
: , , , 2 21t 311
where pg is the Euclidean momentunM; is the physical :(47T)zf d“pe 3 7 (Ot
mass and its value at the integration is considered up to this (2m?\ (pg+MD2  pi+M3

appropriate perturbative order m Since the wave function
and mass renormalization is already done, the next-to-

2
leading order diagram®rder ofb?) are represented as - §X0'18316 o (C5)
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