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Perturbative test of exact vacuum expectation values of local fields in affine Toda theories
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Vacuum expectation values of local fields for all dual pairs of nonsimply laced affine Toda field theories
recently proposed are checked against perturbative analysis. The computations based on Feynman diagram
expansion are performed up to the two-loop level. We obtain, good agreement.
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I. INTRODUCTION

The vacuum expectation values~VEVs! of local fields
play an important role in quantum field theory~QFT! and
statistical mechanics@1,2#. In QFT defined as perturbed con
formal field theory~CFT!, they constitute the basic ingred
ents for multipoint correlation functions, using short-distan
expansions@2,3#. Recently, important progress has be
made in the calculations of the VEVs in two-dimension
integrable QFT. In Ref.@4#, an explicit expression for the
VEVs of the exponential field in the sine-Gordon and sin
Gordon models—A1

(1) affine Toda field theory~ATFT!—was
proposed. Moreover, it was shown in Ref.@5# that this ex-
pression can be obtained as the minimal solution of cer
‘‘reflection relations’’ which involve the Liouville ‘‘reflection
amplitude’’ @6#, where the sinh-Gordon QFT was consider
as a perturbed Liouville conformal field theory. Subs
quently, this ‘‘reflection relations’’ method was successfu
generalized to other models, for which the VEVs were c
culated. We refer the reader to Refs.@7–11# for details.

It is thus natural to study the case of dual pairs of no
simply laced ATFTs, as well as the simply laced one wh
had been previously considered@12#. In addition to the tech-
nical aspect, such VEVs can provide interesting informat
as this class of models appears in various physics cont
@13–16#. These include special case of 3DU(1) or XY
model @12#, VEV of the spin fields in the Zn-Ising models
@17# perturbed by the leading thermal operator, asympto
of the cylindrically symmetric solutions of the classical To
equations. More recently, exact off-shell results for coup
minimal models were considered in Ref.@18#.

ATFTs can be considered as perturbed Toda field theo
~TFTs!. In Ref. @19# the ‘‘reflection amplitudes’’ for all non-
simply laced TFTs were proposed as well as the exact r
tion between the masses of the particles and the param
in the ATFT action. On the one hand, reflection amplitud
are the main objects which can be used for studying the
asymptotics of the ground state energyE(R) @or effective
central chargeceff(R)# for the system on the circle of sizeR
@6,20,21,19#. This result agrees well with the TBA result a

*Present address: Department of Physics, Seoul National Un
sity, 151-742, Seoul, Korea.
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smallR @22,23#, which can provide a nontrivial test for theS
matrix in Refs.@24,25#. On the other hand, reflection ampl
tudes were also used to calculate the exact VEVs for all d
pairs of nonsimply laced ATFTs@19#.

However, to support the exact VEVs, it is desirable
check with various methods since the ‘‘reflection relation
method hasno rigorous mathematical proof. For simple
cases such as sinh-Gordon and Bullough-Dodd, the e
VEVs have been checked both nonperturbatively and per
batively@4,7,26,27#. The purpose of this paper is to check th
conjectured VEVs of ATFTs using perturbation theory up
two-loop level. In Sec. II, we review some basic facts abo
ATFTs and the axiomatic equations satisfied by the VE
which lead to the exact solutions given in Ref.@19#. Pertur-
bative analysis follows in Sec. III where we compute VEV
of scalar fields up to one-loop and some composite opera
up to two loops.

II. EXACT VACUUM EXPECTATION VALUES
IN AFFINE TODA FIELD THEORIES

Let us first recall some known results about ATFTs whi
are relevant in further analysis. The ATFT with real coupli
b corresponding to the affine Lie algebra1 Ĝ is generally de-
scribed by the action in Euclidean space:

A5E d2xF 1

8p
~]mw!21(

i 50

r

mei
ebei•wG , ~2.1!

where$ei%PFs( i 51,...,r ) is the set of simple roots ofĜ of
rank r and2e0 is a maximal root satisfying

e01(
i 51

r

niei50. ~2.2!

r-

1Throughout the paper, we denote an untwisted algebra aĜ,

while Ĝ∨ refers to a twisted one. Furthermore,G denotes a finite Lie
algebra.
©2001 The American Physical Society02-1
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The fields in Eq.~2.1! are normalized such that

^wa~x!wb~y!&52dab logux2yu2. ~2.3!

Since all potential terms in simply laced case have the s
conformal dimensions, they all renormalize in the same w
It is then sufficient to introduce one scale parameter2 m in
action ~2.1!. However, for the nonsimply laced case~except
BCr[A2r

(2)2r>2— affine Lie algebra in which case thre
different parameters are necessary! we have to introduce two
different parameters:3 one is associated with the set of sta
dard roots of lengthuei u252 and is denoted bymei

5m

whereas the other, denoted bymei
5m8, is associated with

the set of nonstandard roots of lengthuei u25 l 2Þ2.
In the presence of background charge, the ATFTs can

considereds CFTs perturbed byebe0w. The background
charge is given by

Q5br1
1

b
r∨, ~2.4!

wherer5 1
2 Sa.0a andr∨5 1

2 Sa.0a∨ are, respectively, the
Weyl and dual Weyl vector ofG. The sums in their defini-
tions run over all positive roots$a%PF1 , dual roots$a∨%
PF1

∨ . Then, the stress-energy tensorT(z), where z5x1

1 ix2 , z̄5x12 ix2 are complex coordinates ofR2,

T~z!52
1

2
~]zw!21Q•]z

2w ~2.5!

ensures the local conformal invariance of the TFT. The c
responding central charges were calculated in Ref.@28#. De-
fining a5(a1 ,...,ar), the exponential fields

Va~x!5exp~a•w!~x! ~2.6!

are spinless conformal primary fields with dimensions

D~a!5
Q2

2
2

~a2Q!2

2
. ~2.7!

By analogy with the Liouville field theory@29,30,6# the
physical space of statesH in the TFTs consists of the con
tinuum variety of primary states associated with the ex
nential fields~2.6! and their conformal descendents with

a5 iP1Q and PPRr . ~2.8!

In addition to the conformal invariance TFTs possess
extended symmetry generated byW(G) algebra@31,32#. In-
deed, for any arbitrary Weyl group elementŝPW the fields
VQ1 ŝ(a2Q)(x) are reflection images of each other and a
related by the linear transformation:

2For the sinh-Gordon model (A1
(1) ATFT)m is generally called the

cosmological constant.
3We choose the convention that the length squared of the

roots are 4 forCr
(1) and 2 for the other untwisted algebras.
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e
y.

e

r-

-

n

e

Va~x!5Rŝ~a!VQ1 ŝ~a2Q!~x!, ~2.9!

whereRŝ(a) is called the ‘‘reflection amplitude,’’ an impor
tant object in CFT which defines the two-point functions
the operatorVa . In Ref.@19# the following expression for the
reflection amplitudeRŝ(a) for nonsimply laced TFT was ob
tained:

Rŝ~a!5
AŝiP

AiP
, ~2.10!

where

AiP[A~P!5)
i 51

r

@pmei
g~ei

2b2/2!# i vi
∨
•P/b

3)
a.0

G~12 iP•ab!G~12 iP•a∨/b!

with Eq. ~2.8!, the fundamental coweightsvi
∨ and we denote

g(x)5G(x)/G(12x) as usual. We accept Eq.~2.10! as the
proper analytical continuation of the functionRŝ(a) for all a.
For ŝiPWs, the subset of Weyl group elements associa
with the simple rootsei , notice that the ratioA( ŝiP)/A(P)
reduce to the reflection amplitudeSL(ei ,P) of the Liouville
field theory@6#:

A~ ŝiP!

A~P!
5SL~ei ,P!

5@pmei
g~ei

2b2/2!#2 iP•ei
∨/b

3
G~11 iP•eib!G~11 iP•ei

∨/b!

G~12 iP•eib!G~12 iP•ei
∨/b!

. ~2.11!

Then, as ATFTs can be realized as CFTs perturbed
some relevant operators@33#, in the conformal perturbation
theory~CPT! approach one can formally rewrite anyN-point
correlation functions of local operatorsOa(x) as

^Oa1
~x1!¯OaN

~xN!&ATFT

5Z21~l!^Oa1
~x1!¯OaN

~xN!e2l*d2xFpert~x!&TFT

where

Z~l!5^e2l*d2xFpert~x!&TFT ,

Fpert is the perturbing local field,l is the CPT expansion
parameter which characterizes the strength of the pertu
tion and^¯&TFT denotes the expectation value in the TF
Whereas vertex operators~2.6! satisfy reflection relations
~2.9! in the CFT, the CPT framework provides4 similar rela-
tions among their expectation values in the perturbed cas
other words, if dots stands for any local insertion one ha

^Va~x!~¯ !&TFT5Rŝ~a!^VQ1 ŝ~a2Q!~x!~¯ !&TFT .
~2.12!

g
4At the moment, there is no rigorous proof of this assumption
2-2
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Then, if we define the one-point functionG(a) as the VEV
of the vertex operatorVa(x) for nonsimply laced ATFT by

G~a!5^exp~a•w!~x!&TFT . ~2.13!

one can formally rewrite this expression5 as

^ea•w~x!&ATFT5Z21~l! (
n50

`
~2l!n

n! E )
j 51

n

d2yj^e
a•w~x!

3ebe0•w~y1!¯ebe0•w~yn!&TFT . ~2.14!

Indeed, using Eq.~2.12! one expects that similar relation
hold for G(a). If this VEV satisfies the system of functiona
equations associated withWs then it also automatically sat
isfies more complicated reflection relations. Furthermore
was shown in previous works@14,15#, ATFTs can be under-
stood as different perturbation of TFTs. The simplest c
~beyond the sinh-Gordon model! is the Bullough-Dodd
model which can be understood alternatively@7# as a per-
turbed Liouville CFT with coupling constantb or a perturbed
Liouville CFT with coupling constant2b/2. Here one can
proceed similarly. We denoteFs(G) as the set of simple
roots of the finite Lie algebraG, h the extra root associate
with the perturbation and$e i% an orthogonal basis (e i•e j
5d i j ) in Rr . Each one of the ATFT Lagrangian represen
tion, denotedLb@Fs(G)#, associated withFs(G) and the
coupling constantb can be rewritten in two different ways
04600
s

e

-

Lb@Fs~Br
~1!!#[Lb@Fs~Br ! % h[e052~e11e2!#,

[L2b@F̄s~Dr ! % h52e r #;

Lb@Fs~Cr
~1!!#[Lb@Fs~Cr ! % h[e0522e1#,

[L2b@F̄s~Cr ! % h[22e r #;

Lb@Fs~F4
~1!!#[Lb@Fs~F4! % h[e052e12e2#,

[L2bF F̄s~B4! % h[2
1

2
~e12e22e32e4!G ;

Lb@Fs~G2
~1!!#[Lb@Fs~G2! % h[e052&e1#,

[L2b@F̄s8~A2! % h[2A2/3e2#,

where the different sets of simple roots are reported in A
pendix B. Using Eq.~2.12! implies that the VEV~2.13! must
satisfysimultaneouslytwo irreducible systems of functiona
equations corresponding to two different setsWs . It results
that G(a) obeys the functional equations

G~ta!5SL~ej ,P!G$t@Q1 ŝj~a2Q!#% for all ŝjPWs,

~2.15!

where
QFT
a

Br
~1! :~t! i j 5d i j for G[Br and ~t! i j 52d ir 112 j for G[Dr ;

Cr
~1! :~t! i j 5d i j and ~t! i j 52d ir 112 j for G[Cr ;

F4
~1! :~t! i j 5d i j for G[F4 and ~t! i j 5d i j ~d2 j1d3 j1d4 j2d1 j ! for G[B4 ;

G2
~1! :~t! i j 5d i j for G[G2 and ~t! i j 52d i 32 j for G[A2 ,

with coupling constantb. Notice that by simply looking at the Dynkin diagram symmetry ofBr
(1) andCr

(1) ~see Fig. 1! one can
also differently deduce

5In fact, the integrals in Eq.~2.14! are highly infrared divergent. By analogy with the situation appearing in the perturbed Liouville
@7#, one can get around this infrared problem by considering a 2D world sheetSg topologically equivalent to a sphere equipped by
background metricgns(x)5r(x)dns . Then the termsr(yk) which appear in the integrals analogous to those in Eq.~2.14! provide an
efficient infrared cutoff. We report the reader to Ref.@7# for details.
2-3
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G~a1 ,a2 ,...,ar 21 ,ar !5G~2a1 ,a2 ,...,ar 21 ,ar ! for Br
~1! ;

G~a1 ,a2 ,...,ar 21 ,ar !5G~2ar ,2ar 21 ,...,2a2 ,2a1! for Cr
~1! . ~2.16!
p-
th

ru

r

The reflection relations~2.15! ~or, equivalently the relations
~2.16! for Br

(1) and Cr
(1)! constituted the starting point in

deriving the expectation valuesG(a). Following previous
works, we also assumed thatG(a) is a meromorphic func-
tion of a.

Furthermore, for real coupling constantb, the spectrum
for any dual pair of nonsimply laced ATFT consists ofr
particles with the massesMa (a51,...,r ) expressed in terms
of the mass parameterm̄. These spectra are reported in A
pendix A. The exact relation between the parameters of
actionm andm8 and the masses associated with the spect
of the physical particles was obtained in Ref.@19# using the
Bethe ansatz method~see, for example, Refs.@34,35#!. We
report the reader to@19# for details. By replacing these
er

do

en

04600
e
m

mass-m relations in the ‘‘minimal’’ solution6 of the func-
tional equations~2.15!, the following exact expression fo
the VEVs ~2.13! was proposed@19#:

G~a!5@m̄k~G!k~G!#2a2F mg~11b2!

m8g~11b2l 2/2!G
d•a~12B!/Hb

3F ~2pmg~11b2!! l 2/2

2pm8g~11b2l 2/2!
Gd•aB/Hb

3expE
0

` dt

t
@a2e22t2F~a,t !#. ~2.17!

with
F~a,t !5 (
a.0 F sinh~aabt!sinh$@aab22Qab1H~11b2!#t%sinhF S b2uau2

2
11D t G

sinh~ t !sinhS b2uau2

2
t D sinh@H~11b2!t#

G

n

al

i-
y
has
of
of

q.
where we denoteaa5a•a and

d5
r∨h∨2rh

12 l 2/2
.

The expressionsk(G) and k~G! can be found in Ref.@19#.
Here, it is convenient to introduce the ‘‘deformed’’ Coxet
number@24,25#

H5h~12B!1h∨B with B5
b2

11b2 , ~2.18!

whereh(h∨) is the Coxeter~dual Coxeter! number ofG(G∨).
The integral in Eq.~2.17! is convergent if

a•Q2H~b11/b!,Re~a•a!,a•Q for all aPF
~2.19!

and is defined through analytic continuation outside this
main. The particular case of Eq.~2.17! corresponds to the
simply laced one for which the result is in perfect agreem
with Ref. @12#.
-

t

Similarly, it is straightforward to obtain the VEVs of a
ATFT based on a twisted affine Lie algebraĜ∨. The reflec-
tion amplitudes corresponding to the TFT, i.e., the conform
part were easily obtained from Eq.~2.10! by using the dual-
ity relation for the parametersmei

andmei

∨ associated with the

dual pairs of ATFTs@19#:

pmei
gS b2ei

2

2 D 5Fpmei

∨gS ei
∨2

2b2D Gb2ei
2/2

~2.20!

and the changeb→1/b. Each one of the Lagrangian assoc
ated with Ĝ∨ can be written in two different ways. In an
case, the resulting system of functional equations which
to be satisfied by the VEV is nothing else than the dual
Eq. ~2.15!. To express the corresponding solution in terms
the mass of the physical particles, the mass-m relations in the
twisted case@19# are used. Finally, the result for the VEV
G(a) for all twisted affine Lie algebras is obtained from E
~2.17! with the changeb→1/b.

6Notice that the prefactor which was given in Ref.@19# was pre-
sented in a slightly different, but equivalent, form.
2-4
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It is similarly straightforward to study theBCr[A2r
(2)

~self-dual! remaining case which was considered in R
@36#. Notice that the expectation values~2.17! can be used to
derive the bulk free energy of the ATFT:

f Ĝ52 lim
V→`

1

V
ln Z, ~2.21!

whereV is the volume of the 2D space andZ is the singular
part of the partition function associated with action~2.1!. For
specific valuesaPb$ei%, with $ei%PFs ( i 51,...,r ) or e0 , the
integral in Eq.~2.17! can be evaluated explicitly. Using th
exact mass-m relations and the obvious relations

]m f ~m!5(
$ i %

^ebei•w& or ]m8 f ~m8!5(
$ i 8%

^ebei 8•w&,

~2.22!

where$i% and$ i 8% denote, respectively, the whole set of lon
and short roots, the following bulk free energy was obtain
@19#:

f Ĝ5
m̄2 sin~p/H !

8 sin~pB/H !sin@p~12B!/H#
,

Ĝ5Br
~1! and Cr

~1! ,

f Ĝ5
m̄2 cos@p~1/321/H !#

16 cos~p/6!sin~pB/H !sin@p~12B!/H#
,

Ĝ5G2
~1! and F4

~1!

and similarly with the changeB→(12B) for (Br
(1))∨,

(Cr
(1))∨, (G2

(1))∨, and (F4
(1))∨. In particular, these result

were in perfect agreement with the values obtained using
Bethe ansatz approach@19#.
04600
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III. PERTURBATIVE CHECKS

To support the result~2.17! of Ref. @19# beyond the non-
perturbative check~provided by the bulk free energy calcu
lation!, we present here a perturbative check. We expand
vacuum expectation value~2.17! in power series inb and
compare each coefficient with the one obtained from st
dard Feynman perturbation theory associated with Eq.~2.1!.
In the first part of this section, we consider the VEV of th
field ^w& which is given by

^w&5
d

da
G~a!U

a50

. ~3.1!

Since the result renders the same conclusion for all ATF
we chooseDr

(1) series as illustrative examples and omit t
details for other simply laced cases~Ar

(1) case is trivial as
seen shortly!. It also provides a useful step to the calculati
of Br

(1) series which is obtained fromDr
(1) through folding

procedure. Finally we present the result of an exceptio
algebraG2

(1) .
In a second part, as an additional check we also cons

the ‘‘fully connected’’ composite operator expectation val
of ^wawb& defined by

^^wawb&&[^wawb&2^wa&^wb&5
1

2

d2 ln G~a!

daadab U
a50

.

~3.2!

Since these quantities are quite complicated to calculate
turbatively, we will content ourselves with considering on
some simple combinations of them up to two loops forB3

(1) ,
C2

(1) , andG2
(1) cases.

A. Perturbative checks of Šw‹

Using Eqs.~2.17! and ~3.1! one finds the result
^w&5
d

Hb
lnF mg~11b2!

m8g~11b2l 2/2!G1B
d

Hb
~ l 2/221!ln@2pmg~11b2!#

1bE
0

`

dt (
a.0 F a

sinh$@2a•Qb2H~11b2!#t%sinhF S b2uau2

2
11D t G

sinh~ t !sinh@H~11b2!t#sinhS b2uau2

2
t D G . ~3.3!
ally
To proceed further,7 we expand̂ w& order by order inb and
write the result as

^w&5
1

b
K1bL1O~b2!. ~3.4!

7However, notice that̂ w&50 identically for Ar
(1) series since

m85m, l 252 and(a.0a sinh@(2a•Q2hQ)bt#50 @37,12#.
For the simply laced case, this expression is drastic
simplified:

K52(
a.0

a ln gS a•r

h D ;

L52E
0

`

dt
coth~ t !

sinh~ht! H (
a.0

a sinh@~h22a•r!t#J .

~3.5!
2-5
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FIG. 1. Automorphisms associated with the Dynkin diagramBr
(1) andCr

(1) corresponding to Eq.~2.16!.
e
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ss

regu-

ss
Let us introduce the component notationKi5ei•K and Li
5ei•L.

For theDr
(1) series, the nonperturbative results are giv

as

K15Kr 215Kr52S 12
4

hD ln2; ~3.6!

L15Lr 215Lr5
1

2h FjS 1

hD1jS 2

hD2jS 1

2
1

1

hD2jS 1

2D G ,
whereh52r 22 and fork52,3,...,r 22 we have

Kk5 ln 22S 12
4

hD ln 2; ~3.7!

Lk5
1

2h F2jS 1

2
1

k

hD2jS 1

2
1

k21

h D2jS k

hD2jS k21

h D
1jS 2k22

h D12jS 2k21

h D1jS 2k

h D G ,
where we definej(x)5C(x)1C(12x) in terms of the di-
gamma functionC(x)5d ln G(x)/dx.

Perturbative analysis of the action~2.1! begins with shift-
ing w→wcl1w such thatwcl satisfies the minimum of the
ATFT potential. This classical solution reproduces exac
the leading term in Eq.~3.4!:
04600
n

y

wcl•ei5Ki . ~3.8!

This identity provides the amusing relations among theg(x)
functions, whenx is related to Lie algebra quantity, which i
observed for general case in Refs.@12,19#

One-loop perturbative calculation is conveniently do
using the classical mass eigenstate representation@25#. Dr

(1)

series representation is given by

e15~2 l 1
1,2 l 1

2,...,2 l 1
r 22,1,0!, ~3.9!

ek5~ l k21
1 2 l k

1,l k21
2 2 l k

2,...,l k21
r 222 l k

r 22,0,0!

for

k52,...,r 22,

er 215~ l r 22
1 ,l r 22

2 ,...,l r 22
r 22,0,21!,

er5~ l r 22
1 ,l r 22

2 ,...,l r 22
r 22,0,1!

wherel k
a5(2/Ah)sin(2akp/h).

The next-to leading order term, i.e., the field expectat
value to the one-loop order̂w&b is given by tadpole dia-
grams which in general needs to be appropriately regu
ized. The perturbative result is, however, finite for the ma
eigenstate representation, and does not depend on the
larization scheme forDr

(1) series~and in general for simply
laced cases!.

To distinguish from the component notation,w j , which is
obtained from the proposed VEV, the perturbative ma
2-6
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eigenstate component is denoted asFc. If the values are
correct, then the relation between these two quantities sh
be w j5(cF

cej
c whereej

c is the cth component of the mas
eigenstate representationej .
e

c-

s
e

o

04600
ld
Fc vanishes whenc5r 21, r andc5odd<r 22,

^Fc&b50 ~3.10!

and otherwise
~3.11!
whereZa5sin(ap/h). The divergent terms cancel each oth
and the total contribution remains finite.

With the help of various relations of the digamma fun
tion and trigonometric function one can prove thatL’s in
Eqs. ~3.6! and ~3.7! coincide with the ones in Eq.~3.11!.
Considering this as a nontrivial check, one can view this a
useful identity between digamma functions and trigonom
ric functions

bLi5 (
c5even

r 22

^Fc&bei
c . ~3.12!

For example, we have fori 51,

jS 1

hD1jS 2

hD2jS 1

2
1

1

hD2jS 1

2D
5 (

c5even

r 22

8 cosS cp

h D H sin2S cp

2h D lnF4 sin2S cp

2h D G
2cos2S cp

2h D lnF4 cos2S cp

2h D G J . ~3.13!

For the nonsimply laced case, the situation becomes m
involved. By expanding Eq.~3.3!, one finds the following
coefficients:

K5
d

h
lnS 2m

l 2m8D2 (
a.0

a∨ ln gS a•r∨

h D ,

L5
d

h H S l 2

2
21D @2gE1 ln~pmb2!#1~h2h∨!lnS 2m

l 2m8D J
2E

0

`

dt
1

sinh~ht! H coth~ t ! (
a.0

a sinh@~h22a•r∨!t#

2
2

h (
a.0

a∨a•~hr2h∨r∨!cosh@~h22a•r∨!t#J
r

a
t-

re

wheregE50.5772... is Euler’s number.
The explicit value forBr

(1) series takes the form

K15
2

h
lnS 2m8

m D2 ln 2; ~3.14!

Kk5
2

h
lnS 2m8

m D , k52,3,...,r 21;

Kr52S 12
2

hD lnS 2m8

m D1 ln 2;

and

L15
1

h
J1T11DI1 ; ~3.15!

Lr5S 1

h
2

1

2DJ1Ir1DIr ;

Kk5
1

h
J1Ik1DIk , k52,3,...,r 21,

where

J5F2gE1 ln~pmb2!1
2

h
lnS m8

2m D G ~3.16!

and

I15
1

2h H jS 1

hD1jS 2

hD2jS 1

2
1

1

hD2jS 1

2D J ;

Ir5
1

2h H 2jS 1

hD2jS 2

hD2jS 1

2D J ;

Ik5
1

2h H jS 2k22

h D12jS 2k21

h D1jS 2k

h D2jS k

hD
2jS k21

h D2jS 1

2
1

k21

h D2jS 1

2
1

k

hD J . ~3.17!
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Note thatIk’s (k51,...,r 21) are identical toLk’s in Eq.
~3.7! for Dr 11

(1) series.DI’s are given by

DI15DIr5
1

2h2 H 22jS 1

hD14jS 2

hD22jS 1

2
1

1

hD J ;

~3.18!

DIk5
1

2h2 H ~424k!jS 2k22

h D14kjS 2k

h D22kjS k

hD
1~2k22!jS k21

h D1~2k22!jS 1

2
1

k21

h D
22kjS 1

2
1

k

hD J ,

and turn out to be identical to each other:

DI15DIk5DIr5
4

h2 ln 2. ~3.19!

As noted for the simply laced case,K is identified with
the classical valuewcl . For Br

(1) series

bei•wcl5 lnS mni

mei
D 2

1

h (
j 50

r

nj lnS mnj

mei
D , ~3.20!

which agrees withK in Eq. ~3.14!.
Beyond the classical result, however, renormalizat

should be carefully incorporated unlike in the simply lac
case. The classical mass eigenstate representation ofBr

(1) is
obtained by folding the one ofDr 11

(1) ~3.9!,

e15~2 l 1
1,2 l 1

2,...,2 l 1
r 21,1!

ek5~ l k21
1 2 l k

1,l k21
2 2 l k

2,...,l k21
r 212 l k

r 21,0!

for

k52,...,r 21,

er5~ l r 21
1 ,l r 21

2 ,...,l r 21
r 21,0! ~3.21!

from which we obtain the one-loop contribution^w&b :
04600
n

^F r&b50;

^Fc&b5
b

4AhZc
2

grZ2c when c5odd<r 21.0;

^Fc&b52
b

4AhZc
2 $4Zc~gc/2Zc/2

2 2g~h2c!/2Z~h2c!/2
2 !1grZ2c%

when c5even<r 21, ~3.22!

whereZa5sin(ap/h) as is given in Eq.~3.11!. ga is the Eu-
clidean integration of the tadpole diagram

ga[E d2k

~2p!2

1

k21ma
2 , ~3.23!

wherema is the physical mass equivalent toMa in Appendix
A up to this order ofb2. Its explicit value is given byma

52m̄0 sin(pa/h) for a51,2,...,r 21 and mr5m̄0 with m̄0
2

52212/h(pmb2)(m8/m)2/h.
Here, to evaluate the one-loop diagram we are using

normal ordering with respect to the free field theory. In th
schemega is given by

ga5
1

4p F lnS ma

2 D 2

12gEG5FJ1 lnS ma

m0
D 2

1
2

h
ln 2G .

~3.24!

Then, using the identity

S (
c5odd

r 21

2 (
c5even

r 21 D csc2S cp

h D sinS 2cp

h D sinS 2kcp

h D5
k

2h
,

k51,...,r 21, ~3.25!

we find that theJ parts of Eq.~3.22! agree exactly with
those of Eq.~3.15!, i.e.,

bLi uJ-part5(
c

ei
c^Fc&buJ2part.

Furthermore, since the term ln(ma /m̄0)
2 in Eq. ~3.24! repro-

ducesIk’s which are the same asLk’s in Eq. ~3.7! of the
Dr 11

(1) series fork51,...,r 21, the agreement~3.12! in the
Dr

(1) case immediately implies

bLi uI.part5(
c

ei
c^Fc&buI-part.

Finally, DIk terms come from the last term (2/h)ln 2 in Eq.
~3.24!. This establishes the exact agreement between the
turbative and nonperturbative results for theBr

(1) case.
2-8
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For the exceptional algebraG2
(1) , we have

K15
1

2
lnS m8

3m D12 lngS 1

6D24 lngS 1

3D ;

K252
1

2
lnS m8

3m D2 ln gS 1

6D12 lngS 1

3D ;

L15
1

6 H 4gE1 lnF ~pmb2!S pm8b2

3 D G J 1
1

2
ln 31

2

9
ln 2;

L252
1

3 H 2gE1
1

2
lnF ~pmb2!S pm8b2

3 D G J 2
2

9
ln 22

1

4
ln 3.

~3.26!

On the other hand, the corresponding one-loop diagram
given by

~3.27!

and

~3.28!

After explicit calculations as in the previous case, we fi
^F2&b5bL2 and^F1&b5 1

2 L11L2 which completes the per
turbative check forG2

(1) .
04600
is

B. Perturbative checks of the composite operatorsŠwawb‹

From the expression~2.17! and using Eq.~3.2! we have
the VEV of composite operator

Gab[^^wawb&&

52dab(
i 51

r
ni

H~11b2!
ln@2pmei

g~11b2ei
2/2!#

1E
0

` dt

t
@dabe22t2Fab#,

where

Fab5b2t2 (
a.0

aaab

3
sinh@~11b2a2/2!t#cosh$@~11b2!H22ba•Q#t%

sinh~ t !sinh~b2a2t/2!sinh@~11b2!Ht#
.

~3.29!

These are in general rather complicated quantities to ca
late perturbatively due to various divergences to be ta
care of up to some finite part. For some combinations suc
the relative value of the composite operatorGaa2Grr (a
51,...,r 21), however, the propagators are renormaliz
with an overall renormalization constant and therefore, m
of the complications due to the renormalization scheme
appears. Therefore, such quantities provides an additi
independent check of the nonperturbative result in a sim
way. Since the perturbative calculation is done in the cla
cal mass eigenstate representation, in this section we will
the mass eigenstate representation fora in Eq. ~3.29!.

For C2
(1) , the composite operator value is given by

G1250;

G112G225E
0

`

dt
b2t sinh~11b2!t@4 cosh~418b2!t24#

sinht sinhb2t sinh~416b2!t

5 ln 21b2~0.79221 . . . !1O~b4!. ~3.30!

The corresponding value is confirmed perturbative
^^F1F2&&50 since there is no vertex at all for this case. T
other one is given by
~3.31!
2-9
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whose Feynman integration is done in Appendix C. T
agrees with the nonperturbative results~3.30!.

For the caseB3
(1) , the nonperturbative result gives

G125G2350;

G112G33522E
0

` dt

t
~F112F33!

5b2~20.195326 . . . !1O~b4!;

G222G33522E
0

` dt

t
~F222F33!

52 ln 31b2~20.321552 . . . !1O~b4!, ~3.32!

where
~3.33!

~3.34!

046002-10
F112F335
b2t2

sinh~ t !sinh@~615b2!t# H sinh@~11b2!t#

sinh~b2t !

3$2cosh@~413b2!t#12 cosh~b2t !

2cosh@~21b2!t#%1
sinh@~11b2/2!t#

2 sinh~b2t/2!

3$cosh@~414b2!t#1cosh@~21b2!t#22%J ;

F222F335
b2t2

sinh~ t !sinh@~615b2!t# H sinh@~11b2!t#

sinh~b2t !

3$cosh@~413b2!t#2cosh@~21b2!t#%

1
sinh@~11b2/2!t#

2 sinh~b2t/2!
$cosh@~414b2!t#

1cosh@~21b2!t#22} J .

The perturbative calculation gives the result^^F1F3&&
5^^F2F3&&50 since there is no vertex at all in this case
The relative values of the composite operators are
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which exactly reproduces Eq.~3.32!.
A similar check can be done forG2

(1) .G12 is not vanishing
but is given by

G1252)b2 (
a.0

F S 1

2
a11a2D •aG~a1•a!

3Edt
t sinh@~11b2a2/2!t#cosh@~11b2!H22ba•Q#t

sinh~ t !sinh~b2a2t/2!sinh@~11b2!Ht#

5
2

)
b2~0.0488314 . . . !1O~b4! ~3.35!

whose value is also obtained from the perturbative diagr

~3.36!
a
ro

.B
s
T

-
U
T

as
no

04600
Finally, the relative value of the composite operators

G112G2252E
0

` dt

sinh~ t !sinh@~614b2!t#

3$sinh@~11b2!t#@cosh~2t !

2cosh~4t12b2t !#%

1sinhS t1
b2t

3 D F2 coshS 2b2t

3 D
2coshS 4t1

10b2t

3 D2

coshS 2t1
4b2t

3 D G
5

1

2
ln 31

2

3
b2~0.183165 . . . !1O~b4! ~3.37!

is reproduced by the following perturbative diagrams:
~3.38!
the
on
It is straightforward to generalize the above perturbative c
culation to other remaining cases and to confirm the p
posed VEV.
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APPENDIX A

In contrast to the simply laced case for which the m
ratios correspond to the classical values, mass ratios for
l-
-

.

-

s
n-

simply laced case get quantum corrections@24,25#. The mass
spectrum for the dual cases remains the same with
changeb→1/b, where the mass spectrum depends only
one parameterm̄:

Br
~1! :Mr5m̄, Ma52m̄ sin~pa/H !, a51,2,...,r 21,

Cr
~1! :Ma52m̄ sin~pa/H !, a51,2,...,r ,

G2
~1! :M15m̄, M252m̄ cos@p~1/321/H !#,

F4
~1! :M15m̄, M252m̄ cos@p~1/321/H !#,

M352m̄ cos@p~1/621/H !#, M452M2 cos~p/H !.
~A1!
2-11
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For nonsimply laced Lie algebras, the Coxeter and dual C
eter numbers are

hB
r
~1!5h~C

r
~1!!52r , h~B

r
~1!!∨5hA

2r 21
~2! 52r 21,

h~C
r
~1!!∨5hD

r 11
~2! 52~r 11!,

hF
4
~1!512, h~F

4
~1!!∨59, hG

2
~1!56, h~G

2
~1!!∨5hD

4
~3!54.

APPENDIX B: NOTATIONS

Fs~A2!5&e2 , A3/2e121/&e2 ;

Fs~Br !5e i2e i 11 , 1< i<r 21, e r ;

Fs~Cr !5e i2e i 11 , 1< i<r 21, 2e r ;

Fs~Dr !5e i2e i 11 , 1< i<r 21, e r1e r 21 ;

Fs~F4!5e i2e i 11 , i P$2,3%,e4 ,
1

2
~e12e22e32e4!;

Fs~G2!5A2/3e3 , 1/&e12A3/2e2 ;

and

F̄s~Cr !5Fs~Cr !ue i↔er112 i ; F̄s~Dr !5Fs~Dr !ue i↔er 112 i
;

F̄s~A2!5Fs~A2!ue1↔e2
;

F̄s~B4!5Fs~B4!ue i↔2e i , i P$2,3,4% .

APPENDIX C: FEYNMAN INTEGRALS

The Feynman integration forC2
(1) in Eq. ~3.31! is pre-

sented as the following. The lowest order diagrams~order of
b0! are represented as the Feynman integration

^^F1F12F2F2&&0524pE d2pE

~2p!2 S 1

pE
21M1

22
1

pE
21M2

2D
5 ln

M2
2

M1
2 5 ln 2, ~C1!

where pE is the Euclidean momentum.Mi is the physical
mass and its value at the integration is considered up to
appropriate perturbative order inb. Since the wave function
and mass renormalization is already done, the next
leading order diagrams~order ofb2! are represented as
s.

04600
x-

is

o-

^^F1F12F2F2&&b

5~4p!2E d2pE

~2p!2 S 32I 12

~pE
21M1

2!22
16I 11

pE
21M2

2D
50.79221 . . . , ~C2!

where

I i j 5E d2kE

~2p!2

1

~kE
21Mi !

2

1

~kE1pE!21M j
2

5E
0

1 dx

4p

1

2x~12x!pE
21~12x!Mi

21xMj
2 . ~C3!

The Feynman integrations~3.33! and~3.34! of the next-to
leading order forB3

(1) are given by

^^F1F12F3F3&&b

5~4p!2E d2pE

~2p!2 S ~ I 3312I 12!

~pE
21M1

2!22
~2I 1312I 33!

~pE
21M3

2!2 D
520.195326 . . . ,

^^F2F22F3F3&&b

5~4p!2E d2pE

~2gp!2 S ~ I 331I 1119I 22!

~pE
21M2

2!2 2
~2I 1312I 23!

~pE
21M3

2!2 D
520.321552 . . . . ~C4!

The Feynman integrations~3.36! and~3.38! of the next-to
leading order forG2

(1) are evaluated respectively as

^^F1F2&&b5~4p!2
2

)
E d2pE

~2p!2 S I 11

~pE
21M1

2!~pE
21M2

2! D
5

2

)
30.0488314 . . . ,

^^F1F12F2F2&&b

5~4p!2E d2pE

~2p!2
S S 2I 121

4

3
I 11D

~pE
21M1

2!2 2
~9I 121I 11!

pE
21M2

2
D

5
2

3
30.183165 . . . . ~C5!
.
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