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Exact S-matrices have played essential roles in nonperturbative computations arising in AdS/CFT
dualities. We review basic aspects of the world-sheet S-matrices for the AdS/CFT and their appli-
cations in an introductory level. We focus mainly on the exact S-matrix of the planar N = 4 SYM
theory which consists of AdS5/CFT4 and its applications. S-matrices of β- and η-deformations of
AdS5/CFT4 and AdS4/CFT3 and related recent developments are briefly commented.
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I. INTRODUCTION

AdS/CFT duality conjecture, proposed by J. Malda-
cena in 1997 [1] and refined in subsequent papers [2,3], is
an equivalence between type IIB superstring theory on
AdS5 × S5 background geometry and N = 4 supersym-
metric SU(N) Yang-Mills gauge theory (SYM) defined
on 4d space-time which is the boundary of AdS5. The
duality has been already glimpsed in the 1/N expansion
where its order is identified with the genus of 2d surfaces
where the Feynman diagrams are drawn [4]. The quali-
tative gauge/string correspondence also appeared in the
flux tubes connecting quarks in the strong expansions [5–
7]. But the AdS/CFT duality shows explicit and quanti-
tiative relations between the two theories. The radius R
of AdS5 × S5 space and the inverse string tension α′
are related by R2/α′ =

√
λ in terms of the ’t Hooft

coupling constant λ defined by λ = Ng2
YM [4]. Since

three-strings vertices vanish in the planar (’t Hooft) limit
N → ∞, each string state can be characterized by a few
conserved quantities such as energy and angular momen-
tum. The N = 4 SYM theory, being a conformal field
theory (CFT) [8–10], contains composite operators with
single trace over the color index in the planar limit which
correspond to various string states moving in the curved
background. Among correlation functions on both sides
of the duality, most studies have been focused on two-
point functions which are completely determined by con-
formal dimensions and energies of corresponding string
states. While the conformal dimensions are calculable
in ordinary perturbative series for small values of λ, the
energies of string states can be computed in the large λ
limit as 1/λ expansions based on the classic string ac-
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tions on the world-sheet. This mismatch was at the core
of difficulty in proving the AdS/CFT duality, and needed
a new non-perturbative approach based on the integra-
bility which is valid for any value of λ.

The integrability was first discovered in perturbative
gauge and string theories. One-loop dilatation operator
for the single trace composite operators in the SO(6)
scalar sector was identified with a hamiltonian of the
SO(6)-invariant integrable spin chain, from which the
conformal dimensions could be obtained by the Bethe
ansatz [11]. The integrability of the dilatation operators
is maintained in two- and three-loops [12,13]. The world-
sheet string action on AdS5×S5 can be constructed as a
sigma model on a coset space [14], and shown to be clas-
sically integrable [15]. These results have lead to conjec-
ture that the integrability is exact in all orders of λ.

In this short review, we focus on the non-perturbative
world-sheet S-matrices as a result of integrability [16–
18]. (These should be distinguished from the space-time
scattering amplitudes.) Once constructed by symme-
try, the factorized elastic S-matrix [20] can be applied
to compute the conformal dimensions, hence the ener-
gies of string states for any value of coupling constant,
by integrability tools. Also, we explain how this ap-
proach can be extended to several deformed theories and
AdS4/CFT3.

We refer [21,22] for more comprehensive reviews which
include technical details and other important results not
covered here.
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II. N = 4 SYM AND ADS5/CFT4

The action of the N = 4 SYM is given by

S =
∫
d4x Tr

(
1
4
FμνF

μν +
1
2
DμΦiDμΦi

−g
2
YM

4
[Φi,Φj ][Φi,Φj ] + Ψ

a
σμDμΨa

− igYM

2
σab

i Ψa[Φi,Ψb] − igYM

2
σi

abΨ
a
[Φi,Ψ

b
]
)
, (1)

where σμ and σi are the gamma matrices in four and
six dimensions, respectively. There are 6 scalar fields
Φi, 4 Dirac fields Ψa, and 4 covariant derivatives Dμ, all
in the adjoint representations of the color SU(N). The
trace is taken over the color index. This theory has co-
formal symmetry with vanishing β function whose total
symmetry group becomes PSU(2, 2|4) including SU(4)
R-symmetry.

The first breakthrough was made when operator-
mixing matrix among composite operators consisted of
scalar fields of the SYM was identified with an integrable
spin-chain Hamiltonian in the leading λ order. The con-
formal dimensions of the eigen-operators can be deter-
mined by Bethe ansatz method which diagonalizes the
Hamiltonian. This interesting interplay between a gauge
theory and an integrable model has been quickly gener-
alized to a most generic composite operators of the SYM
and to higher-order perturbative computation, and even-
tually to conjectures of “asymptotic” Bethe ansatz which
are claimed to be valid up to all orders.

Single-trace (gauge-invariant) composite operators
consisted of the elementary fields

Tr [O1O2 · · · OL] (x), Oi ∈ {DnΦ ,DnΨ , DnF} , (2)

are local (all the elementary fields are at the same lo-
cation x), gauge-invariant and super-multiplets of the
PSU(2, 2|4) symmetry. (We will omit the space-time co-
ordinate x unless it is necessary.) Composite operators
are transformed to others under scale transformations.
The dilation operator which governs the mixing is un-
known except a few lowest orders in perturbation theory.
Even for the perturbative dilatation operator, it is still
challenge to diagonalize the matrix to find eigenvalues as
anormalous dimension.

A special case is the 1/2-BPS operator Tr[ZL] (Z ≡
Φ5 + iΦ6), which has no quantum correction and the
anormalous dimension is strictly zero in all orders. Then,
it is possible to represent this protected operator by a
vacuum state

Tr[

L︷ ︸︸ ︷
ZZZ · · ·ZZZ] ≡ |0〉, (3)

and generic composite operators (2), obtained by replac-
ing each Z in (3) with any of the elementary SYM fields

(“impurities”), as excited states

|
1
↓
Z · · ·Z

x1↓
χ Z · · ·Z

x2↓
χ′ Z · · ·Z

xM↓
χ′′ Z · · ·

L

↓
Z〉

= A†
χ(x1)A

†
χ′(x2) · · ·A†

χ′′(xM )|0〉. (4)

Here A†
χ is a Zamolodchikov-Faddeev operator of χ [19]

acting on the vacuum state and the indices xi’s denote
locations of impurities in the chain of elementary fields.
Due to the cyclic property of the trace, the state (39)
should be invariant under a uniform translation xk →
xk + 1.

Integrability in a quantum field theory is possible when
it has infinitely many conserved charges, a difficult con-
dition to meet, and usually appears in one dimension.
For the planar N = 4 SYM, the magnons move along
the spin chain with the location on the chain as a 1d
coordinate. Charges Qk, k = 1, . . . , N , which are ex-
pressed as polynormials of momentum (e.g. the energy
is a quadratic), should be conserved

Qk(in) =
n∑

i=1

(pi)k = Qk(out) =
m∑

i=1

(p′i)
k (5)

where p1, . . . , pn, and p′1, . . . , p
′
m are momenta before and

after scattering, respectively. For sufficiently large (infi-
nite) N , these conservation laws lead to [20]

n = m, {p′1, . . . , p′n} = {p1, . . . , pn}. (6)

The first equality means the number of particles are pre-
served while the second indicates that only momentum
exchanges are allowed in the scattering process. This im-
plies also that the multi-particle scattering amplitudes
are factorized into products of 2 → 2 S-matrices. Fur-
thermore, since three-particle process should be indepen-
dent of orders of 2 → 2 scatterings, they should satisfy
the Yang-Baxter equation [23–25]. Many 2-particle S-
matrices have been found exactly by either directly from
the Yang-Baxter equation or by symmetries imposed on
the on-shell states along with additional axioms such as
unitarity and crossing symmetry. These (2-particle) S-
matrices are functions of two momenta and coupling con-
stants of the underlying theories.

For the AdS/CFT system, 2-particle states, Fourier-
transformed in the momentum space, can be obtained
by two Zamolodchikov-Faddeev operators acting on the
BPS vacuum:

|χ1(p1)χ2(p2)〉 ≡ A†
χ1

(p1)A†
χ2

(p2)|0〉, (7)

and the 2 → 2 S-matrix is matrix elements between in-
coming and out-going states [19,20]

|χ1(p1)χ2(p2)〉in ≡
∑
χ′

1χ′
2

S
χ′

1χ′
2

χ1χ2 (p1, p2)|χ′
1(p1)χ′

2(p2)〉out.

(8)

In the case of N = 4 SYM, there are 16 excitations (8
Ψa’s, 4 Dμ’s, and 4 of the 6 Φi’s), hence the 2-particle
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S-matrix has the size of 162 × 162. A very important
observation is that the excitation spectrum in the single
trace composite operator in the planar N = 4 SYM can
be written as

χ, χ′, χ′′, . . . ∈ {Φaȧ ,Ψȧα , Ψ̄aα̇ , Dαα̇Z} ,
a, ȧ = 1, 2, α, α̇ = 3, 4 . (9)

which belong to a fundamental representation of a cen-
trally extended su(2|2)L ⊗ su(2|2)R [18]. The creation
operators A†

χ can be written as

A†
ii̇
(p) = A†

i (p) ⊗A†
i̇
(p),

i = (a, α) = 1, 2, 3, 4, i̇ = (ȧ, α̇) = 1, 2, 3, 4. (10)

Therefore, the AdS/CFT S-matrix is factorized into a
tensor product of two identical S-matrices, one acting
on the index i and the other on i̇, S = S⊗ Ṡ. Since they
are identical, we can focus on S which is 42 × 42 matrix.

The S-matrix elements are defined by

A†
i (p1)A

†
j(p2)|0〉in

=
4∑

i′,j′=1

Si′j′
i j (p1, p2)A

†
j′(p2)A

†
i′(p1)|0〉out. (11)

By acting symmetry generators of su(2|2) on both sides
of Eq.(11) and assuming they annihilate the vacuum
states, one can derive a system of linear equations for the
S-matrix elements, which determine the S-matrix up to
an overall scalar funtion S0. Out of 16 × 16 elements,
following 36 matrix elements are nonzero [18,26]

S11
11 = S22

22 = A , S33
33 = S44

44 = D ,

S12
12 = S21

21 =
1
2
(A−B) , S21

12 = S12
21 =

1
2
(A+B) ,

S34
34 = S43

43 =
1
2
(D − E) , S43

34 = S34
43 =

1
2
(D + E) ,

S34
12 = S43

21 = −S43
12 = −S34

21 = −1
2
C ,

S12
34 = S21

43 = −S21
34 = −S12

43 = −1
2
F ,

S13
13 = S23

23 = S14
14 = S24

24 = G ,

S31
13 = S32

23 = S41
14 = S42

24 = H ,

S13
31 = S23

32 = S14
41 = S24

42 = K ,

S31
31 = S32

32 = S41
41 = S42

42 = L , (12)

with

A = S0
x−2 − x+

1

x+
2 − x−1

η1η2
η̃1η̃2

, B = −S0

[
x−2 − x+

1

x+
2 − x−1

+ 2
(x−1 − x+

1 )(x−2 − x+
2 )(x−2 + x+

1 )
(x−1 − x+

2 )(x−1 x
−
2 − x+

1 x
+
2 )

]
η1η2
η̃1η̃2

,

C = S0
2ix−1 x

−
2 (x+

1 − x+
2 )η1η2

x+
1 x

+
2 (x−1 − x+

2 )(1 − x−1 x
−
2 )

, D = −S0 , E = S0

[
1 − 2

(x−1 − x+
1 )(x−2 − x+

2 )(x−1 + x+
2 )

(x−1 − x+
2 )(x−1 x

−
2 − x+

1 x
+
2 )

]
,

F = S0
2i(x−1 − x+

1 )(x−2 − x+
2 )(x+

1 − x+
2 )

(x−1 − x+
2 )(1 − x−1 x

−
2 )η̃1η̃2

, G = S0
(x−2 − x−1 )
(x+

2 − x−1 )
η1
η̃1
,

H = S0
(x+

2 − x−2 )
(x−1 − x+

2 )
η1
η̃2
, K = S0

(x+
1 − x−1 )

(x−1 − x+
2 )
η2
η̃1
, L = S0

(x+
1 − x+

2 )
(x−1 − x+

2 )
η2
η̃2
, (13)

and x±i = x±(pi) , η1 = η(p1)eip2/2 , η2 =
η(p2) , η̃1 = η(p1) , η̃2 = η(p2)eip1/2 where

x+ +
1
x+

− x− − 1
x−

=
i

g
,

x+

x−
= eip , η = eip/4

√
i(x− − x+) . (14)

The energy of a particle with momentum p is given by

E = −ig
(
x+ − 1

x+
− x− +

1
x−

)
=

√
1 + 16g2 sin2 p

2
. (15)

This result for the energy matches with known limits for
g =

√
λ/(4π) [27]. We remark that the above S-matrix

is in fact in the “string frame” [26]. Another version is
defined in the “spin-chain frame,” where the S-matrix is

still (13) but with η1 = η̃1 = η(p1) , η2 = η̃2 = η(p2)
[18]. An interesting observation is that this su(2|2) S-
matrix is closely related to Shastry’s R-matrix [28] which
establishes integrability for the Hubbard model [29].

This S-matrix can be shown to satisfy the Yang-
Baxter equation (or “twisted” version of it for
the spin-chain frame S-matrix) and the unitarity
S12(p1, p2)S21(p2, p1) = I (I is the 16 × 16 identity ma-
trix) if its scalar factor S0 satisfies a functional relation

S0(p1, p2)S0(p2, p1) = 1 . (16)

Another condition for S0 is the crossing symmetry [30–
32], which can be understood as a commutativity of the
particle creation operator A†

i with 2-particle singlet op-
erator [32] defined by

I(p) ≡ CijA†
i (p)A

†
j(p)

= −iεabA†
a(p)A†

b(p) + εαβA†
α(p)A†

β(p). (17)
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Here, p is defined by x±(p) = 1/x±(p) so that E(p) =
−E, p = −p. Nontrivial condition A†

i (p1)I(p2) =
I(p2)A

†
i (p1) can be satisfied if

S0(p1, p2)S0(p1, p2) =
x−1 − x+

2

x+
1 − x+

2

1
x−
1
− x−2

1
x+
1
− x−2

. (18)

Going through marvelous mathematical manipulations,

unique solution (up to “CDD” ambiguity) of Eqs. (16)
and (18) has been found

S0(p1, p2)2 =
x−1 − x+

2

x+
1 − x−2

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

σ(p1, p2)2, (19)

where the BES phase factor σ(p1, p2) [33–36] is

σ(p1, p2) = exp
{
i[χ(x+

1 , x
−
2 ) + χ(x−1 , x

+
2 ) − χ(x+

1 , x
+
2 ) − χ(x−1 , x

−
2 )]

}
χ(x, y) ≡ −i

∮
|z|=1

dz

2πi

∮
|z|=1

dz′

2πi
1

x− z

1
y − z′

ln Γ
[
1 + ig

(
z + 1

z − z′ − 1
z′
)]

ln Γ
[
1 − ig

(
z + 1

z − z′ − 1
z′
)] . (20)

This S-matrix can be checked perturbatively. In the
strong coupling, the S-matrix on worldsheet can be com-
puted by using light-cone gauge fixed Lagrangian [37].
The S-matrix has bound-state poles [35, 38–40] which
belong to atypical totally symmetric representations of
su(2|2) with dimension 4Q [41] with a generalized dis-
persion relation

E =
√
Q2 + 16g2 sin2 p

2
. (21)

The S-matrices of the bound states are not completely
fixed by the su(2|2) symmetry. An important observa-
tion is that the fundamental bulk S-matrix (12),(13) has
a remarkable Yangian symmetry Y (su(2|2)) [42] which
determines completely the two-particle [41,43] and gen-
eral Q-particle bound state bulk S-matrices [44].

III. APPLICATIONS OF THE S-MATRIX

The world-sheet S-matrix is scattering amplitudes of
excitations on the 2d world-sheet nonlinear σ-model or
the 1d spin-chin of SYM composite operators. The phys-
ical quantities such as space-time correlation functions
are derived from this S-matrix using various integrabil-
ity techniques.

1. Asymptotic Bethe ansatz

We first consider composite operators in the su(2)
sector with only one type of impurities X ≡ Φ11̇, like
Tr[Z · · ·ZX · · ·XZ · · ·X · · · ]. Composite operators are
mixed to each other under the dilatation. At one-loop
order, the mixing matrix is given by

Γ =
λ

8π2

L∑
l=1

(1 − Pl,l+1) , (22)

which is nothing but Heisenberg quantum spin-chain
model [45] where P is the permutation operator on two
spin states | ⇑〉 ≡ Z and | ⇓〉 ≡ X. The “magnon” ex-
citations X’s on the spin chain are dual to string states
called “giant magnon” in S2 subspace of S5 [27]. The
conformal dimensions are given by eigenvalues of this
“integrable” spin-chain Hamiltonian, which are solved
by Bethe ansatz equations (BAEs) [46]. It is possible to
continue this procedure to a few next orders but impos-
sible to generalize to arbitrarily higher ones.

Another way to view this is to consider a state with
N number of Φ11̇ with momenta {pi}

∑
1≤x1<···<xN≤L

ei(p1x1+···+pN xN )Tr[Z · · ·
x1↓
X · · ·

x2↓
X Z · · ·

xN↓
X · · · ] = A†

11̇
(p1)A

†
11̇

(p2) · · ·A†
11̇

(pN )|0〉.

One can consider a virtual process in which X with pk moves in the right direction in the spin chain. While
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it moves past Z freely, it will scatter with other X’s.
From Eq. (12), one can see that scattering of two X’s
are diagonal and satisfy

A†
11̇

(pk)A†
11̇

(pj) = A(pk, pj)2A
†
11̇

(pj)A
†
11̇

(pk). (23)

After consecutive scatterings with other X’s and return-
ing back to orginal position xk (utilizing the cyclic prop-
erty of trace), a periodicity condition or the “Bethe-Yang
equation” [24,47] is obtained

1 = eipkL
N∏

j �=k

A(pk, pj)2

= eipk(L−N)eiP
N∏

j �=k

S2
0(pk, pj)

(
x+

k − x−j
x−k − x+

j

)2

, (24)

where P =
∑

j pj . (Cyclicity restricts P = 0.) The

weak coupling limit g � 1 of this equation coincides
with the BAE of the Heisenberg spin-chain model. It is
also consistent with string results in the g � 1 limit [48]
and matches with conjectured all-loop BAEs [49].

For general states including all types of SYM fields,
one should consider

A†
i1 i̇1

(p1)A
†
i2 i̇2

(p2) · · ·A†
iN i̇N

(pN )|0〉,
i1, i̇1, · · · , iN , i̇N = 1, 2, 3, 4. (25)

During the scattering process with each other, the
su(2|2) indices change since the S-matrix is non-diagonal
as can be seen in Eq. (12). The Bethe-Yang equations
can be derived by diagonalizing very complicted “trans-
fer” matrix which acts on states like (25) [50,51]. This
has been done by nested algebraic Bethe ansatz [52], by
nested coordinate Bethe ansatz [18, 53] or by analytic
Bethe ansatz [32]. The resulting BAEs are

eipk(−L+N−m
(1)
1
2 −m

(2)
1
2 ) = eiP

N∏
j �=k

S2
0(pk, pj)

(
x+

k − x−j
x−k − x+

j

)2 2∏
α=1

m
(α)
1∏

j=1

(
x−k − y

(α)
j

x+
k − y

(α)
j

)
,

ei P
2

N∏
k=1

(
y
(α)
j − x−k
y
(α)
j − x+

k

)
=

m
(α)
2∏

l=1

(
v
(α)
j − w

(α)
l + i

2g

v
(α)
j − w

(α)
l − i

2g

)
,

m
(α)
1∏

j=1

(
w

(α)
l − v

(α)
j + i

2g

w
(α)
l − v

(α)
j − i

2g

)
=

m
(α)
2∏

k �=l

(
w

(α)
l − w

(α)
k + i

g

w
(α)
l − w

(α)
k − i

g

)
, (26)

where v(α)
j ≡ y

(α)
j + 1/y(α)

j . The anomalous dimension
of a state is given by

Γ = 2ig
N∑

k=1

(
1
x+

k

− 1
x−k

)
. (27)

The su(2) BAE, Eq. (24), is given by restricting all
m

(α)
i = 0. These AdS5/CFT4 BAEs derived from the

S-matrix are identical to those already conjectured in
[17].

2. Finite-size effects

All-loop asymptotic BAEs are derived from the S-
matrix which is defined for asymptotic particle states.
The distances between the particles should be much
larger than Compton wave-length, or the size L� 1/m.
If not, the aymptotic BAEs are not valid. However, it
is the finte L which is interesting since it is either the
size of composite operators or angular momentum of the
string theory.

The S-matrix still plays an important role also even in
this finite-size computation. Generalized Lüscher correc-
tions [54] have applied to both strong [55,56] and weak
coupling limits [57] of AdS/CFT computations where 4-
loop anomalous dimension of the su(2) Konishi operator
matches with perturbative computations [58,59].

Standard method for finite-size effects in integrabil-
ity is thermodynamic Bethe ansatz (TBA) [60, 61] or
Y -system [62]. 2d space-time is viewed as Euclidean
rectangular (in fact, a torus with periodicity imposed
on each parallel edges) with finite spatial size L and infi-
nite temporal size. If the channel duality (space↔time)
is imposed, the theory is now defined on infinite spatial
size where the S-matrix is well-defined but with finite
temperature 1/L due to finite temporal size. The finite-
size effect (Casimir energy) is computed from the free
energy of the scattering particles with temperature 1/L.
At thermodynamic equilibrium, the free energy should
be minimized with constraints that the momenta of par-
ticles should satisfy the asymptotic BAEs.

There are three nontrivial steps to follow in apply-
ing TBA to AdS/CFT. In space↔time, the Euclidean
2-vector (p, iE) maps to (iE, p) which should be identi-
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fied with “mirror” 2-vector (p̃, iẼ), namely, p̃ = iE, Ẽ =
−ip. For a relativisitc case with a dispersion rela-
tion E2 − p2 = m2, its mirror one is still given by
Ẽ2 − p̃2 = m2. However, the mirror dispersion relation
derived from Eq. (15) by this mirror transformation is
[63]

Ẽ = 2 sinh−1

(√
p̃2 + 1
4g

)
. (28)

The S-matrix and asymptotic BAEs (26) are basically
the same as before with proper analytic continuations
such as pk → p̃k, L → R = ∞. Next step is the bound
states which occur as poles of the S-matrix [44]. In the
infinite R limit, the Bethe strings are known to be exact
solutions of the BAEs which describe the bound states.
“Diagonalized” S-matrices between the bound states can
be constructed easily from the “string hypothesis” [64].
The most general Bethe-Yang equations in the mirror
space can be written including these infinite number of
bound states. The TBA equations can be derived by
standard procedure as infinte number of coupled non-
linear integral equations [65–69]. They can be trans-
formed to “Y -systems” which are functional difference
equations:

YN,M

(
u+

i

2g

)
YN,M

(
u− i

2g

)
=

[1 + YN,M+1(u)][1 + YN,M−1(u)]
[1 + Y −1

N−1,M (u)][1 + Y −1
N+1,M (u)]

, (29)

where the indices (N,M) cover 2D integral lattices

(N,M) =⎧⎪⎨⎪⎩
(n, ν) with ν = +1, 0,−1, n = 2, · · · ,∞
(1,±m) with m = 2, · · · ,∞
(1, 1), (1,−1), (2, 2), (2,−2) .

(30)

The last step is to generalize the TBA of the vacuum
state to those for excited states which include some ex-
cited particles in the physical space [70–72]. This can be
done either by analytic continuations following [73] or
by using the above Y -systems (29) with analytic proper-
ties associated with large L asymptotic conditions. The
energy formula is given by

E(L) =
∑

k

E(pk) −
∞∑

Q=1

∫
du

2π
∂up̃Q log(1 + YQ,0),(31)

where p̃Q is defined by (28) with 1 replaced by Q2.
The analytic and numerical studies of the TBA equa-

tions [74–78] show good agreements with string theory
results [79–83] and with 5-loop Lüscher corrections [84,
85]. To simplify TBA system which contain infinite num-
ber of coupled integral equations, finite number of non-
linear integral equations (NLIE) [86, 87] and quantum
spectral curve formalism have been proposed [88].

3. Structure constants

We have so far described how to determine exact con-
formal dimensions of the single-trace composite opera-
tors in the planar N = 4 SYM theory. The conformal
dimensions fix the two-point correlation functions with
proper normalizations. Another important quantity is
three-point correlation functions

〈Oi(x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|Δ1+Δ2−Δ3 |x1 − x3|Δ1+Δ3−Δ2 |x2 − x3|Δ2+Δ3−Δ1
, (32)

where the coefficients Cijk are the structure constants.
These constants define OPE expansions of two local op-
erators and general multi-point functions in a confor-
mal field theory can be constructed using conformal
bootstraps, at least in principle. There have been sev-
eral interesting approaches to apply the integrability
found in the spectral problem to the structure constants
in both gauge [89] and string theory sides [90–92] of
AdS/CFT. One of recent efforts is to compute “form
factors”, which are matrix elements of local operators
between two asymptotic states, Cijk =out 〈Oi|VOk

|Oj〉in
[93,94]. However, it is not clear how to find the vertex

operator VOk
and if its exact form factors can be com-

pletely determined by the S-matrix. Another proposal
is to cut the string three-point vertex into two hexagon
amplitudes and to sum over all possible internal states lo-
cating on three edges which have been cut and sum over
all distributions of the asymptotic particles in the three
operators to the two hexagons [95]. While this proposal
is promising in that the hexagon amplitudes for a given
particle configuration is completely determined by the
su(2|2) S-matrix (12), main technical difficulties arise
in the sums. This proposal has been checked in various
simple cases.
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IV. OTHER INTEGRABLE S-MATRICES

Integrable deformations and 3d AdS/CFT are briefly
reviewed.

1. S-matrices of Deformed AdS/CFTs

A. β-deformation

This is one-parameter marginal deformation, obtained
by replacing the superpotential for the chiral superfields
of the original N = 4 SYM by

W = ih tr(eiπβφψZ − e−iπβφZψ). (33)

The deformation breaks the supersymmetry down to
N = 1 but still maintains the conformal invariance in the
planar limit to all perturbative orders [96,97], since the
deformation becomes exactly marginal with hh = g2

YM.
When β is real, this deformed SYM theory is dual to
a type-IIB string theory on the Lunin-Maldacena back-
ground [98], which is obtained by a so-called TsT trans-
formation.

In the weak coupling limit, various perturbative anal-
ysis of the deformed SYM has been studied [99] and, in
particular, anomalous dimensions for the one and two
magnon states in the su(2) sector have been computed
up to four loops [100]. There have been several indica-
tions that the anomalous dimensions of the β-deformed
SYM are exactly solvable. Perturbative dilatation oper-
ators are mapped to some integrable spin chains [101].
Exact S-matrix has been proposed as a transform of the
original su(2|2)-invariant S-matrix, [102]

S̃(p1, p2) = F · S(p1, p2) · F, (34)

where F is a Drinfeld-Reshetikhin twist matrix given by

F = e2πiβ(h⊗I⊗I⊗h−I⊗h⊗h⊗I),

h = diag
(

1
2
,−1

2
, 0, 0

)
. (35)

By construction, the Yang-Baxter equation is satisfied.
With this S-matrix along with some twisted boundary
conditions, conjectured all-loop Bethe ansatz equations
have been confirmed [103]. The perturbative four-loop
anomalous dimension of the Konishi operator in the de-
formed gauge theory is reproduced from the Lüscher for-
mula [104]. (Similar results can be obtained by introduc-
ing “operatorial” twisted boundary conditions [105] or Y-
system with twisted asymptotic conditions [106].) Also

in the strong coupling limit, consistency of the twisted S-
matrix has been shown in the finite-size effects of string
configurations and world-sheet scattering amplitudes.

The proposed S-matrix is also valid for N = 4 SYM
deformed by three parameters with proper boundary
twists [102]. While next-to-leading order wrapping cor-
rections of the vacuum energy has been computed [107],
this deformed theory may not be exactly conformal as
claimed recently [108].

B. η-deformation

It is possible to construct a S-matrix which is sym-
metric under centrally extended su(2|2)q, quantum de-
formation of universal enveloping algebra, simply quan-
tum group. As before, the symmetry algebra determines
the S-matrix elements. The matrix structure is simi-
lar as Eq. (12), but individual amplitudes become more
complicated and not presented here [109]. The energy-
momentum dispersion relation is also deformed to

(
1 − g2(q − q−1)2

) [E
2

]2

q

− 4g2 sin2 p

2
=

[
1
2

]2

q

, (36)

with ‘q-number’ defined by [n]q ≡ (qn − q−n)/(q − q−1).
The limit q → 1 reproduces the original su(2|2) S-matrix
and dispersion relation (15).

There are several evidences that this S-matrix de-
scribes scatterings on the world-sheet which string ac-
tion is a nonlinear sigma-model with integrable η-
deformations related to solutions of classical Yang-
Baxter equation [110, 111]. The scattering amplitudes
based on this string action in the g � 1 limit are
shown to be consistent with the su(2|2)q S-matrix for
real q = e−ν/g, ν = 2η/(1 + η2) [112]. Its dual gauge
theory is not much understood while it is believed that
the deformation q should be related to 4d space-time
non-commutativity.

2. S-matrices for AdS4/CFT3

Aharony-Bergman-Jafferis-Maldacena (ABJM) model
is 3d N = 6 superconformal Chern-Simons guage theory
with matter fields [113]. It is a quiver gauge theory with
an action
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S =
k

4π

∫
d3x Tr

[
εμνλ

(
Aμ∂νAλ +

2i
3
AμAνAλ − Âμ∂νÂλ − 2i

3
ÂμÂνÂλ

)
−(DμY )†DμY − iΨ† �DΨ − Vferm − Vbos

]
, (37)

where Vbos and Vferm are the sextic bosonic and quartic
mixed potentials. The gauge fields Aμ (Âμ) are adjoints
of U(N) (Û(N) ) gauge groups, and non-dynamical.
Matter hypermultiplets Y A, ΨA (A = 1, 2, 3, 4) are bi-
fundamentals (N, N̄) representations and Y †

A, Ψ†A are
anti-bifundamentals in (N̄ ,N). This ABJM theory has
a full symmetry group OSp(6|4).

Single-trace composite operators are alternating spin-
chains of bifundamentals and anti-bifundamentals. The
BPS vacuum operator is [114,115]

Tr
(
Y 1Y †

4 Y
1Y †

4 · · ·Y 1Y †
4

)
≡ |0〉. (38)

General composite operators contain two types of ex-
citations, “A-particles” (Y 2, Y 3|Ψ4+,Ψ4−) replacing Y 1

on the odd sites and “B-particles” (Y †
3 , Y

†
2 |Ψ†1

+ ,Ψ
†1
− ) re-

placing Y †
4 on the even sites. Both belong to funda-

mental representations of su(2|2). In the planar limit of
N, k → ∞ with N/k ≡ λ fixed, leading two-loop dilata-
tion operator of su(4) sector of scalar fields is identified
with integrable spin-chain Hamiltonian [116, 117]. The
planar ABJM model is also dual to type IIA string the-
ory moving on AdS4×CP3 backgound, which shows also
classical integrability [118,119].

Motivated by these developments, non-perturbative
integrability has been conjectured. If A†

i and B†
i de-

note A- and B-particle creation operators, respectively,
multi-particle scattering states can be written as

|
1
↓
Y 1 Y †

4 · · ·
x1↓
χA1 Y

†
4 · · ·Y 1

xM↓
χBM

· · ·Y 1

2L

↓
Y †

4 〉
= A†

χ1
(x1) · · ·B†

χM
(xM )|0〉. (39)

The integrability is realized by factorized S-matrices in
the momentum space. Since there are two sets of su(2|2)
excitations, four combinations of scatterings are defined
by

X
†
i (p1) Y

†
j(p2)|0〉in

=
4∑

i′,j′=1

S(XY)i′j′

i j (p1, p2) Y
†
j′(p2) X

†
i′(p1)|0〉out ,

X,Y = A,B. (40)

Notice that there is no reflected “out” states
X

†
j′(p2) Y

†
i′(p1)|0〉out in the RHS of (40). This reflection-

lessness is a basic assumption which can be justified by
other analysis [120]. The charge conjugation and su(2|2)

symmetries determine the S-matrices [121]

S(AA)(p1, p2) = S(BB)(p1, p2) = S0(p1, p2)Ŝ(p1, p2) ,

S(AB)(p1, p2) = S(BA)(p1, p2) = S̃0(p1, p2)Ŝ(p1, p2) ,
(41)

where Ŝ is given by omitting S0 from Eqs.(12) and (13).
The scalar factors can be determined by unitarity and
crossing [121]

S0(p1, p2) =
1 − 1

x+
1 x−

2

1 − 1
x−
1 x+

2

σ(p1, p2),

S̃0(p1, p2) =
x−1 − x+

2

x+
1 − x−2

σ(p1, p2), (42)

with the BES phase factor σ(p1, p2) in Eq.(20). The
dispersion relation of these particles is given by

E =

√
1
4

+ 4h(λ)2 sin2 p

2
. (43)

The interpolating function h(λ) is not completely fixed
by the symmetry.

This S-matrix reproduces the all-loop BAEs conjec-
tured earlier [122]. It has been also confirmed by spin-
chain BAE computations in the weak coupling [123] and
by scattering amplitudes on the world-sheet in the strong
coupling [120]. TBA, Y -systems, and quantum spectral
curve for finite-size effects have been also constructed
[124–126]. The analysis based on these equations lead
to a conjecture on h(λ) by comparing the localization
computation [127]:

λ =
sinh(2πh)

2π 3F2

(
1
2
,
1
2
,
1
2
; 1,

3
2
;− sinh2(2πh)

)
.(44)

This conjecture matches with all existing perturbative
results in both weak and strong coupling limits.

V. CONCLUDING REMARKS

Integrability in AdS/CFT is a rapidly developing sub-
ject which covers wide areas of gauge and string theo-
ries in truly non-perturbative and quantitative way. In
this short review, we have focused on the world-sheet
S-matrices and briefly explained the applications. We
recommend to read original references for details.
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Several important issues related to S-matrices could
not be covered. Integrability and S-matrix for the string
dynamics in the strong coupling have been left out. An-
other topic is boundary integrability. Open strings at-
tached on giant gravitons, which are D3-branes wrap-
ping 3-cycles in the S5, are dual to composite operators
which are baryon-like determinant operators in N = 4
SYM theory:

εi1···iN
εj1···jN Φi1

j1
· · ·ΦiN−1

jN−1
(Z · · ·ZχZ · · ·χ′Z · · ·Z)iN

jN
,

Φ = Z, Y . (45)

The integrable boundary introduces boundary scatter-
ing matrices, which can be completely determined by
the symmetry [128]. These boundary S-matrices satisfy
the boundary Yang-Baxter equations and are used to
construct boundary asymptotic BAEs. Another devel-
opment related to the boundary problem is to compute
expectation values of cusped Wilson loop operators. By
inserting scattering states at the location of the cusp,
the each half-line of the non-BPS Wilson loop operator
becomes both boundaries. The symmetry of the excita-
tions is reduced from su(2|2) ⊗ su(2|2) to su(2|2) which
decides the boundary S-matrix to be the same as the
single factor of the bulk S-matrix (12) [129,130]. TBA
derived from these S-matrices has determined the ex-
pectation values exactly. We have also omitted recent
developments of exact S-matrices of AdS3/CFT2, which
are su(1|1) symmetry. We refer to a recent review [131]
for this subject.
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