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Emergent Phenomena

The Standard Model of
Particle Interactions
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Mandate of low-energy theorists

|dentify all phases of ‘'matter’ and characterize each phase in
terms of a minimal set of low-energy parameters that
determines all low-energy observables

Phase Y

- Low-energy parameters : x; X,
- Observables
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Universality of low-energy physics

There exists a set of low-energy parameters defined through
observables measured at energy scale u K A
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Those low-energy parameters determine all observables at that
energy scale and below within errors that vanish in powers of

u/A
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*Extracting Jn ({wz‘; kit {g(m) (M)}) is still highly non-trivial



For relativistic QFTs

 The space of low-energy parameters is composed
of a finite number of marginal and relevant

parameters that carry non-negative scaling
dimensions

* RG flow within the finite-dimensional space

g™ (1)

* Scale-invariant fixed points of the renormalization
group flow represent universality classes
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Metals

A non-zero density of fermions form a
droplet of occupied states in the
momentum space

Infinitely many gapless modes that

describe soft shape deformations of the
droplet (particle-hole excitations near
Fermi surface)

Metals subject to strong quantum
fluctuations remain poorly understood

* Metals with vector flavors can behave like matrix models (non-trivial large N limit)
* Dynamical kinematic energy quenching
* UV/IR mixing

Px



Theoretical challenge : infinite-dimensional
space of low-energy theories

* Low-energy theories are characterized by Fermi
momentum, Fermi velocity, couplings, which are
functions of angles around FS
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* To chart the space of metallic universality classes, one
needs to track a functional renormalization group flow
for a minimal set of coupling functions

* Field-theoretic functional RG

Borges, Borissov, Singh, Schlief, SL (2023)



Theoretical challenge :
absence of scale invariance

* There is no scale invariance in metals due to Fermi

momentum, which is a large momentum(UV) scale
but a low-energy(IR) scale

* Fermi momentum, measured in the unit of u,
grows incessantly under scale transformations




Callan-Symanzik equation for metals

relates the vertex function of a theory with K: to
the vertex function with different K;
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Metallic Universality classes
correspond to projective fixed points

* RG flow is attracted toward an one-
dimensional manifold in which k

kp = QL /dQKF,g runs to infinity
- T * Low-energy observables are fixed by
‘ / a set of marginal/relevant coupling
A
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[Kukreja, Besharat, SL (2024)]



Physical consequences of
projective nature of fixed points

 Mismatches between scaling dimension of
couplings and their relevance

— Coupling functions with negative dimensions can
become marginal/relevant

* Alack of unique dynamical critical exponent

— The vertex function in different kinematic regimes
exhibit scale invariance under g = sq, w = s”w with
different z



Example 0 Fermi Liquids Landau

[Benfatto, Gallavotti] [Shankar] [Polchinski]

A finite density of fermions subject to a short-range interaction V

Particles close to the Fermi surface have long life-time 1 ~ V2 E?
-
A Py
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Low-energy eigenstates of interacting electrons /
are labeled by the occupation numbers of single- nkl 01 n;@ Ty v >

particle states



Fermi liquids

 Marginal functions :

— Fermi momentum, Fermi velocity, o, &2

Landau function (the forward
scattering)

* Vanishing pairing interaction at the

projective fixed point

 Emergent symmetry : loop U(1)

[Handane (93), Else, Thorgen, Senthil (22)]
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Non-Fermi liquids at Quantum Critical Points

n
1.01214161.82.0

0 =
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X

[Custers et al.(2003)] [Hashimoto et al. Science 336, 1554 (2012)]

Gapless collective boson coupled with particle-hole excitations
creates qualitative deviations from Fermi liquids

Strongly interacting metals realized in 2+1 dimension — the focus
of this talk



Non-Fermi liquids @ QCP
ky

kx . > V1

SSB Quantum symmetric
Critical Point

* Gapless collective modes mediate interactions between electrons
which are singular in the low-energy limit : no single-particle
excitation with long lifetime

1
>www< V(E) ~ E™ — V(E)°E* > E

e At quantum critical points, Fermi sea is subject to strong quantum
fluctuations



Example 1

Ising-Nematic QCP

(Ag=o) >0

OR

A —0) <0
. > V-1
FL metal with Quantum FL metal with
broken rotational Critical Point unbroken rotational

symmetry (C,) symmetry (C,)




Theory of the Ising-nematic
guantum critical metal
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A dimensional regularization :
an analytic continuation of the 2d metal
to a semi-metal with line node in 3d

[D. Dalidovich, SL (2013)]
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Strongly interaction Semi-metal
Non-Fermi liquid with line node

* Upper critical dimension : d_=5/2



d>d..
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The basin of
attraction for an NFL
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Stable projective NFL fixed points

Only two marginal parameters for
the shape of FS and Fermi velocity

RF6,UF,0

Landau function and pairing
interaction are non-zero, but fixed
by the marginal parameters and
Fermi momentum

* There are fewer NLFs than FLs

e SC fluctuations are intrinsic parts of NFLs



Universal pairing interaction (d > d¢.)

Dimensionless pairing interaction for Cooper pairs
with center of mass momentum g and energy w
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z : a dynamical critical exponent
A: universal exponent
(minus the scaling dimension of the four-fermion coupling function)



UV/IR mixing
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e Ais afunction of dimension

* Four-fermion coupling has a negative
scaling dimension and *naively*
irrelevant for A > 0

* The pairing interaction becomes
marginal for A= 1/2

 The growth of the number of patches
compensates the decay of the interaction
strength

Mismatch between scaling dimension and relevancy



Universal pairing interaction for g # 0
G G
Crossover function
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No unique dynamical critical exponent that sets the relative scaling
between g and w



<— Fermi liquids
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* The non-Fermi liquids become

unstable against
| superconductivity for d<d,.
Semi-metal « A window of energy scale
controlled by NFL quasi-fixed
point with strong UV/IR mixing
— In d=2, LU(1) is expected to
be broken down to the

"d  OLU(1) [odd loop U(1)]

NFL without
UV/IR mixing
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Summary

* The space of metallic universality classes is
infinite dimensional

* Due to Fermi momentum, fixed points of metals
are defined only projectively

— Mismatch between scaling dimensions and
relevancy of couplings

— No unique dynamical critical exponent

* Universality classes of non-Fermi liquids being
mapped out
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