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Why is the TT deformation potentially interesting?

Talks by Ki-Seok (yesterday), Changrim (tomorrow), Feng (tomorrow)

e Unfortunately, it is not about toponium (¢ bound state) recently
“detected” at 30 level in CMS.

o ' = “ (stress tensor)2” is an irrelevant operator and power-counting

non-renormalizable. The corresponding coupling dim[u] = — d that
iIntroduces a fundamental short-distance scale.

e Even though the irrelevant deformations are often ill-defined and hard to

tame, the TT-deformation appears to yield well-defined controllable
theories.

e The TT deformation is model-independent in the sense that it exists In
any local QFTs.

e Moreover, if the undeformed theory is integrable, it remains integrable by
the T'T-deformation: The T7T-deformation preserves integrability.



e The most well-known irrelevant coupling is Gy, in 4d gravity:

The Einstein gravity is non-renormalizable and best regarded as a low-
energy effective theory at E << M, (or species scale?): It is not a UV-

complete theory and presumably requires extra UV DoFs such as strings
to be complete.

e In contrast, the TT-deformed theories (at least in 2-dimensions) seem to
be UV-complete, i.e., being valid at high energies beyond the energy scale

E ~ M7 They exhibit novel physics at short distance scales and the
spacetime becomes somewhat dynamical, reminiscent of gravity:

It provides a new class of quantum field theories that are presumably UV-
complete despite irrelevant interactions. It is thus of great interest in the
study of quantum field theory regardless of connections to string theory/
holography.



¢ From the viewpoint of AdS/CFT, the TT-deformation of CFT is expected to be
dual to some deformation near the boundary of AdS space since the field
theory UV corresponds to the gravity IR.

The most popular proposal is the cutoff AdS which only works for pure gravity
In the absence of matter. It has the issue that GKPW with cutoff doesn’t work,

failing to reproduce the TT-deformed correlators. McGough-Mezei-Verlinde
Kraus-Liu-Marolf

('l come back to this issue later in this talk.)

TT length scale TT length scale

Cutoff (Poincare) AdS space Cutoff AdS space w/ non-normalizable modes of matter
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e Despite unresolved fundamental issues, there is a very appealing observation:

Kraus-Liu-Marolf, Caputa-Datta-Jiang-Kraus

The Brown-York tensor T;; = (K;; — Kh;; + h;))/(4G) at the radial slice

p = nul/(4G) in the Fefferman-Graham gauge can be identified with the stress

tensor 7(x) of the TT-deformed CFT. dp?

1 o
ds? is, = +—6,dx'dx’

4p2 " p
In other words, the TT-deformed stress tensor Tl-j(x) reconstructs a bulk local
field.

e |n the absence of matter, this ID follows from the “Hamiltonian constraint”
Gpp = () which is identical to the T'T flow equation ® = — (u/z)(TT — ©?).

e In the presence of matter, G*, = (T;,,4.;)”, and the RHS spoils the 7T flow

equation, whereas the flow equation holds true in the presence of (primary)

operators, dual to bulk matter, in the TT-deformed CFT. This indicates the
problem of the cutoff AdS proposal in the presence of matter.

This, | believe, is an outstanding issue to be understood.



¢ |n this talk, | discuss the equivalence of the TT-deformed CFT and the
“undeformed” CFT which are mapped to each other by a dynamical

coordinate transformation and use it to study some aspects of the TT
deformation. Conti-Negro-Tateo Cardy

e The dynamical coordinate transformation deforms the space in which CFT
lives rather than the theory (CFT) itself and makes the coordinates operator-
valued.

4 D 4 )
TT-deformed CFT undeformed CFT
on — on
undeformed space TT-deformed space
- y, \_ Y,

® The topics to be discussed are the deformation of the stress tensor, primary

operators, and their correlators, and the short-distance property of the TT
-deformed space. Along the way, | will also discuss holographic description(s).

e This description in terms of the dynamical space is reminiscent of gravity and

somewhat related to the JT gravity/massive gravity representation of the TT
deformation. Dubovsky-Gorbenko et al  Tolley



TT deformation as a coordinate transformation

o Definition of “TT” operator

e Definition of 77 deformation

+ Naively, one might think that the TT-deformed CFT is defined by the
action

?
St = Scpr + K Jd2X@TT

+ However, this isn’t true. It must be defined as an infinitesimal deformation
from the TT deformed theory I [u] to T [u + du] *. T; = Tlg”) is the
stress tensor of the I [ ] theory rather than that of the undeformed J [0]
= CFT theory.

Op
Slu + oul = S[pl

T2

2 (1) —
Jd x@TT = S|u] + oS



TT as a coordinate transformation — cont’d

e Hubbard-Stratonovich transformation (linearizing TT)

1 . 1 y
2. ik jl 2 I
exp (—0S) J[dh]exp [— S Jd xe el hhy, — 4_an xhl-jT-’]

(1) h-integrals dominated by a saddle point for an infinitesimal oy

(2) Since Tij by definition is a response to a small change of the metric,
the TT deformation can be interpreted as the change of the
background metric g;; = g;; + h;; .

e Saddle point of /1 integral

O

//t
l T



TT as a coordinate transformation — cont’d

e A key observation of Cardy

+ The stress tensor is conserved (w/o local operator singularities)

0.T" = 0
e This imposes constraints on the saddle point /:
he = 0+ 0a = — e e TH ith  €lga, =0

+ The TT deformation merely amounts to curl-free diffeomorphisms
X, = X+ Q

e Introducing complex coordinates (z,2) = (z+ a,,Z + ;)

o1
Note: o = 276%(7 — X)

— X 7—X
oT + 00 =0

Sy , TW(x, x)
GZ = FJ' d X
]Z- Rz




CFT on 7T7T-deformed space

The T7T-deformed CFT is equivalent to the undeformed CFT on the 7T-deformed space:

I [u] on R*> = F[0] on R?

mapped by a dynamical coordinate transformation (z,2) — (Z%), Z")

The infinitesimal transformation, from & [u + ou] on R? to I [u] on Réﬂ),

IS given by

T (v ¥
7 > ZWow =, 4 5—'“ d’x %) Cardy
277:2 2 — X

The finite version, from I [u] on R? to I[0] on [R(zﬂ), is known to be

T (1) X, X
Z A Z & J d*x () Conti-Negro-Tateo
- 27% J o 7—X
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CFT on TT-deformed space — cont’d

finite version — conceptually illuminating

e The map between operators in the 77-deformed CFT and those in CFT
on the TT-deformed space, denoting (Z, Z) = (Z®, Z®)

proposal O(A,)A(Z7Z) = (1 — u—ZT(Z)T(Z)) OA(Z2)Ox(Z)

T

where the prefactor is the Jacobian of the (non-holomorphic) coordinate transformation

dz '\ _ — Lo (z, z) BT (2, 2) dz
dZ |~ BT (2, 2) — LeW(z,2) dz
+ In the case of the stress tensor, comparing the two conservation laws

0 0
0=—7TWex)=—TO 4 (X) one finds
o (%) o (X)

T (2, z) T(Z) ith (A,A) = (2,0)

|
\V)
=
ﬁ
-

TZ) - with (A, A) = (1,1)

dim[p] = (=1,-1)

0 (z,z) = —=,



CFT on TT-deformed space — cont’d

Infinitesimal version — practically useful

® The flow equations for the stress tensor from the map:

0 = éaT(u)ab@) @aT(uMu)ab(x)

\ . J/ \ . J/
N N

“undeformed” T' on deformed space deformed T on undeformed space

This yields the following recursion relations and we can systematically find the
deformed stress tensor in terms of the CFT stress tensor:

from *dA 8T(’1)(x X)T('D(Z Z)
( ) - _ T 2 9 9
infinitesimal I'(z,2) = T(2) +[ 2 [4 d'x _
0 R2 L—X
map
TW(x, £)0TW(z, Z TW(x, £)0TW(z, Z
+Jd2x() ()+Id2x(_)_()
R2 — X R2 — X
from kg
infinitesimal @(ﬂ)(z, 7) = J ﬁ [_27[ (T(’D(Z, Z)T(’D(Z, 7) — (")(’1)(2, 2)2)
map 0 27

TO(x, )OW(z, 7 TO(x, )OW(z, 7
o[ e TH0DONED [ o, T DO
R2 <—4A R2 Z—X

from finite map Q) (2, 7) = — [TWT(M(Z, ) — 0w (2, z)ﬂ
T
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TT-deformed space

e The metric on the TT-deformed space reads

2

T2 T T

ds? = dzd7 = (1 + T(Z)T(Z)) d7d7 — L1zyaz? — ET2yaz?

+ This is operator-valued and the explicit expression depends on the states.

® This can be uplifted to 3d, which suggests the holographic description:

ds?p, = b 4 4nC [(1 + “—2T(Z)T(Z)) dZdZ — ET(Z)dZ? — LT(Z)d 2>

+ AdSs (Banados space) in the Fefferman-Graham coordinates in which the TT
coupling u is identified with the radial coordinate. The dynamical coordinates
(Z,7) is more natural for holography.
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TT-deformed space — cont’d

e The TT-deformed space is dynamical in the sense that it backreacts to
insertions of operators.

Z—x |z |?

(A|ZW|A) = 24 L [@2g 8T @nd) _ [\/1 — b4

[(A]ZW]A)]
A A

(AIZW]A) =2

following from

oT™ + 00w = ()
ow—_H (TWTW — (©WY?)
T

N NINE: | z]
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1'T-deformed space — cont’d Doyon-Cardy, Jiang

e The back-reaction of an operator insertion to the TT-deformed space:

2 i Z
u>0
/‘\ o
eNANE N A free space opens up inside

/ .\ ) ) the operator in Z-space for u < 0

N2
Hagedorn phase u < 0
Oale) 6:(«) (there is a limiting high temperature
Ty <A/6m/(c|pul))
UV cutoff phase u > 0O z A z
u<0
(the energy spectrum becomes complex .

at high energies, i.e. for large (A, A))

VW”/\@A(O)
@ > free spj

0(0)
The operator puffs up to the size \
\/ A/ xin Z-space for y > 0

Oa() 04(0)

15



TT-deformed space — cont’d

e A few observations for the property of the dynamical coordinate map
(z,7) — (Z(ﬂ), Z(M)):

A
(1) AIT@)|A) = - as may be expected from CFT
((A]Z]A))

(2) The circle of radius \/ | u| A/m corresponds to the coordinate singularity of
the 2d metric of the TT-deformed space:

detg , = — (1/4)(1 — u*/n*T(Z)T(Z)) = 0 on state | A)

(3) In the case of two operators at Z = = a, the CFT stress tensor vev is
T(Z) = 2a)*Al((Z — a)*(Z + a)?), we get the following picture:

16



Correlators from CFT on 77-deformed space

® The basic idea is to compute the correlators in the “Heisenberg” picture:

(1) = ) = V... M) = — (0 = (0 Z Yoo (0O =
<@A1,A1(Z1, Z1)@A2’A2(Zz, ) @An,ﬁn(zm Zn)>0 <@A1,A1(Zl’ Zl)@Az,Az(ZZ’ 2) @AH,AH(ZH, Zn))ﬂ

Heisenberg Schrodinger

In which the operators in the “Heisenberg” picture are given by the map

_ A+A

0Lse2) = (1- 5T21@2) T 0s2)05(2)

ﬁw‘t

+ However, the holomorphic and anti-holomorphic parts do not factorize in
the deformed space:

(ONZ)OXK(Z)ONZ)OK(Z,y)) # (OAZ)ONZ))NOKZ)OF(Z))
1

(A|Zy = Zo| AYA(A | Zy — Z,| AY2A

e Practically, this is not an issue. We can use (1) the finite map from z — Z(”),
(2) the recursion to find the stress tensor T and ®*) in terms of the CFT
stress tensor, and (3) expand the expressions in p.
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Correlators from CFT on 77-deformed space — cont’d

® For example, using the proposed map of the deformed operators, we find

<@X)A(Z1,Zl)@x)A(Zz’ 2o = (JT AT 20AZ)DONZ)ONZ,) OA(2))),
_ 1 ,MA "dzx <T(X)@A(Zl)@A(ZZ)>O

= AA 2A+]
| Z12 | m2zizt

+(zy © ) +c.c.+ O(u?)
1 — X

hol—antihol coupling
1 8uA? [ In|z;/e|? 1 1 /1 1 .
- 4N 4A 2 2 e \ 7 +Z_ +Ou?)
| Z12 | 7|21 | 212 | | 212 | 12 12

where the point-splitting regularization was used. We have also checked
that this works to the second order for a few known terms in the literature.

e This computation works order by order in perturbation theory in the TT
coupling u.

18



Correlators from CFT on 77-deformed space — cont’d

® However, as it turns out, a very intuitive and simple calculation works in the

semiclassical limit, A > \/E (or the double scaling limit  lim  uA? = fixed)
u—0,A—00

for which the hol-antihol factorization occurs:

lim < [To,@0 A,.(Z,->> = < I1 @Ai(Zi)> < I1 @Ai(zi)>
u—0,A— 00 ie1 i=1 CFT i=1 CFT

CFT factorization

= <H@Ai<2ﬂ>> <H@Ai<2?>>
i=1 crT \ =l CFT

classicalization

where the “classical” coordinate Z¢! is defined by

<T(ch) W A(Zﬂ))
dz = dz - & S

_ _ CFT dZCl
7 (I1._, Oa(Z))crr

+ This is a consequence of the following property for all semi-heavy operators

(T ()T (y) [Tiey Oni(wi)) 1l (T'(2) [ [i=1 Oa, (wi))
<H?=1 Oa, (wl» <H?=1 Oa, (wz)>

L=,y
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Correlators from CFT on 77-deformed space — cont’d

® Heavy operator 2pt functions as an illustration:

1 1

@(ﬂ) @(ﬂ) ; ~ =
( (Z Z1) (Zz ) R |Zfl B Z§l|4A (2a)*A

where the deformed and undeformed coordinates are mapped by

L _ A 1 1 1z -
= J(dZC’—ﬁ(T(Z"l))dZC’> =z E < + — +—In= a>
T

7 \Zl—a Zl4+a a Zl+a

with the regularization (Z¢, Zfl) =(a—¢€,—a+c¢€).For(zy,2) = (b, — b), we find

A1 1 1.2
ILL(‘I— -1 +€>+

2b+€¢ b+ ¢ " —€

*+ The renormalised answer agrees with the known result by Cardy at large A:

= o In"(2b/€)
1y H(ZA + k)> 2hyiarE

(@(ﬂ) (b)@(ﬂ) (—b)) ~

n'
n=0 "
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Towards holography with matter

 We can simply rephrase the 2pt correlator results in the AdS language.
(We do not know how to systematically include 1/A corrections.)

A

radial direction
(deeper into bulk)

fixed u slice (z,2)

UV cutoff € slice (Z,Z) NOT CUT OFF \

The parts of the geodesic in the light blue strip between the constant ¢4 and € slices do
contribute to the 2pt correlator. So the constant yu slice is not a cutoff surface. Instead,
the distance 2a = | Z¢} | is remeasured in terms of 2b = | z;,| in the flat coordinates

(z, Z) on the fixed u slice determined by the dynamical coordinate map.

21



Towards holography with matter — cont’d

An ensemble of AdSs3
with
“Gaussian” average over boundary metric (diffeomorphisms)
Hirano-Shigemori 2020

e Translating the Hubbard-Stratonovich representation of the TT deformation into AdS/CFT

1 L
Orf, aas |77 0)] = 47! [ [dhlexp [—@ [deelkeﬂhljhkl] O pgs |97 (x + o)

observable in TT5,AdS observable in AdS

A 172,52 bds
J[dh]ewM o g" i I 8 g+ h
‘ N
Poincare H BTZ
AdS < _ .
I Variance u (over the scale of deformation)

by iteration
22



Towards holography with matter — cont’d

e A weakness of this proposal is that it requires an infinite iterations of the
infinitesimal Gaussian averaging to reach a finite 11 coupling L.

e This can be improved to a one-go finite-coupling averaging by adopting the 2d
topological gravity (flat space JT gravity) or the massive gravity description of
the T'I-deformed CFT:

[de]ldX] exp [f szxe“ﬁ Eap(0, X" — eg)(aﬁXb B eg )] Onas [¢bdy(X); hﬁg y]

Or,aas |77 )] :J Vit p

observable in TTﬂAdS observable in AdS

with hs/;ly = ege/?éab

This follows from the fact that the 77-deformed CFT is equivalent to CFT

coupled to the 2d massive gravity (or flat space JT gravity with CC).
Tolley Dubovsky-Gorbenko et al

| claim that this should be equivalent to the cutoff AdS in the absence of matter
but differs from it in the presence.
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TT-deformed BCFT

not firm-footing yet
work in progress?

e The TT deformation of BCFT has not been much studied. The CFT-based
approach developed here may have an advantage in this direction:

(1) From the recursion relations for T%¥(z, 7), one can show that

TW(z,7) — TW(z,7) = e~ 71 #OVCIA(T(7) — T(2))

This implies that the CFT boundary condition 7(z) = T(Z) at z = 7 on UHP is
preserved under the 11" deformation. In other words, the boundary condition
in the 7T-deformed CFT can be represented by

TZ)=TZ) at Z=7

(2) In the doubling trick, the TT-deformed bulk BCFT operators on UHP may be

given by

W (» 7) =
O A A(z, 7)

(
1 —

\

IMZ

2

T(Z) T (Z)

hol

24

A+ A

\~ 2
6,2)05(Z)

) hol



TT-deformed BCFT — cont’'d

e The boundary (Cardy) states are determined by the equivalence of the

annulus and cylinder partition functions related by the $ transformation,
(£, ulR?) & (1/¢, ul(R*¢?)) with g = e %" and S' radius R:

B,) = Y Ca (IR |A), with  Cp, (/R = Y (au/R?PCP)

N’

A W p=0
Cardy Ishibashi

The S invariance requires
A _ (0) (0)
Map = 2 CondanCyy,
A/
1
_ (1) ©0) 4 0 MY 4 = (0) (0)
0= Y (€S20 CE) + CUSa L)) +52m) Y, CQSxuCY)
A’ A’

This determines the 7T deformation of the Cardy states

() — =77 ~(0) 2) — _ 0) 3) — _
CAa o 4 CAa ’ CAa o 39 CAa ’ CAa o

727x)> ~0)
128 Aa’

where 27x = n(Ly + L, — ¢/12). (However, not clear if (ZW — Z¥)|B.) = 07)
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Thank you!



