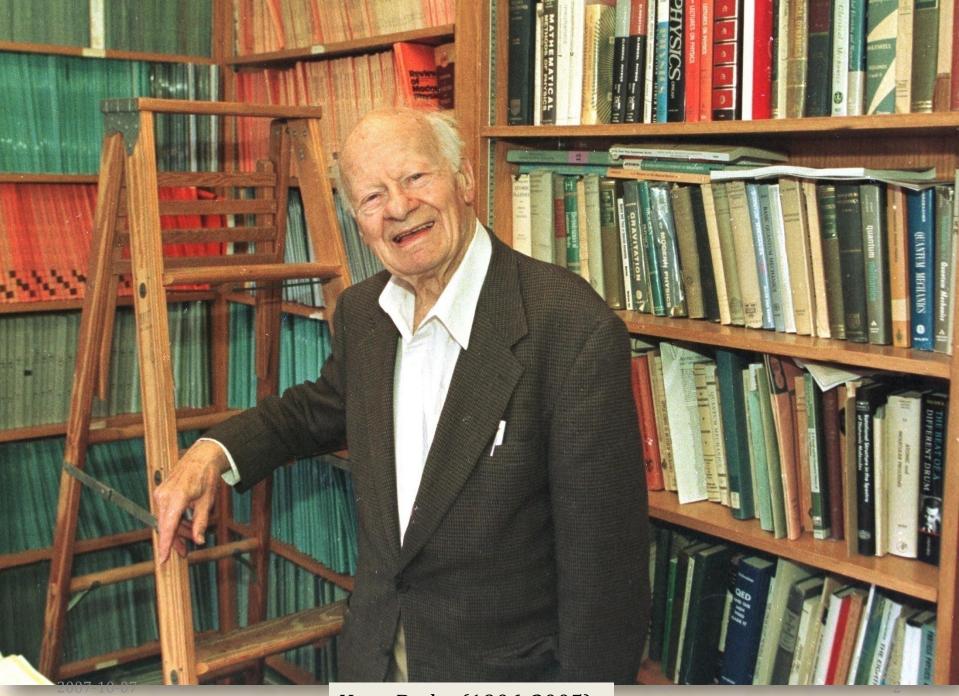
Bethe asked "What is the Bethe ansatz?" 21세기 이론물리학의 새로운 패러다임

이화여대 물리학과 안 창 림

Colloquium at SNU (2007)



Hans Bethe (1906-2005)

ON THE THEORY OF METALS, I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms

by H. Bethe in Rome

(Dated 13 June, 1931; received 17 June, 1931)

A method is given whereby the zero-order eigenfunctions and first-order eigenvalues (in the sense of the London-Heitler approximation scheme) are calculated for a one-dimensional "metal" consisting of a linear chain of a very large number of atoms, each of which has a single s-electron with spin, outside closed shells. In addition to the spin waves of Bloch, bound states are found, in which parallel spins are predominantly on nearest neighbor atoms: these features may be important for the theory of ferromagnetism.

Heisenberg Model

• 1D many-body Quantum Mechanics:

$$\left[H = -J \sum_{j=1}^{N} \overrightarrow{\sigma}_{j} \cdot \overrightarrow{\sigma}_{j+1} = -J \sum_{j=1}^{N} \left[\sigma_{j}^{x} \sigma_{j+1}^{x} + \sigma_{j}^{y} \sigma_{j+1}^{y} + \sigma_{j}^{z} \sigma_{j+1}^{z} \right] \right]$$

$$\sigma_{j}^{a} = \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \sigma^{a} \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} : \quad 2^{N} \times 2^{N} \text{ Matrix}$$
$$\sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

This Hamiltonian is very difficult to diagonalize
 – Numerical Method : N = ~30

- Perturbation theory : not applicable

States

• Hilbert space: dim= 2^N $|\!\!\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\!\!\Downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \cdots \equiv |\!\!\uparrow\uparrow\Downarrow\Downarrow\Downarrow\downarrow\uparrow\Downarrow\cdots\rangle, \cdots \right\}$

 $|\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\cdots\downarrow\rangle$

- Ground State :
 - Ferromagnetic (J > 0):
 - Antiferromagnetic (J < 0) : $|\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\cdots\rangle$ + ...
- Excited States :

Many kinds of Bethe ansatz

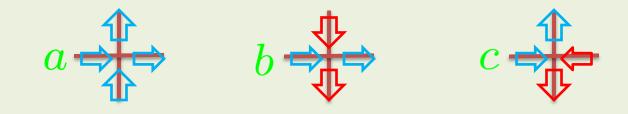
- Coordinate Bethe ansatz
- Algebraic Bethe ansatz
- Functional Bethe ansatz
- Analytic Bethe ansatz
- Asymptotic Bethe ansatz
- Nested Bethe ansatz

• I will concentrate on "Algebraic Bethe ansatz" since it is most general and powerful.

6 vertex model

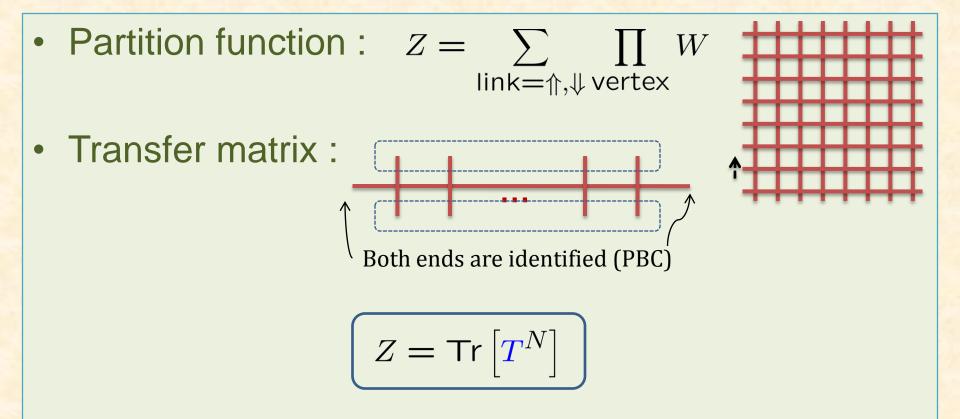
2D Statistical model on square lattice

Boltzmann Weights on each vertex



- Arrows into a vertex = arrows out of a vertex
- Symmetric under arrow inversion

6 vertex model (cont'd)



Need to diagonalize T

6 vertex model (cont'd)

• Relation to HM:

$$T(u) = \exp\left[i\sum_{n=0} u^n Q_n\right], \quad Q_1 \equiv H_{HM}$$

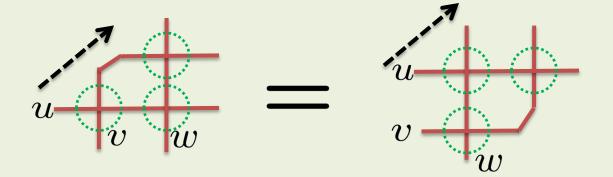
Spectral parameter u is assigned on each row

$$u \longrightarrow \dots$$

- "Integrability" : 무한개의 보존전하 $[Q_n, Q_m] = 0 \Rightarrow [T(u), T(v)] = 0$
- Condition for commuting transfer matrix is ...

Yang-Baxter equation

Let us assume that W satisfies YBE

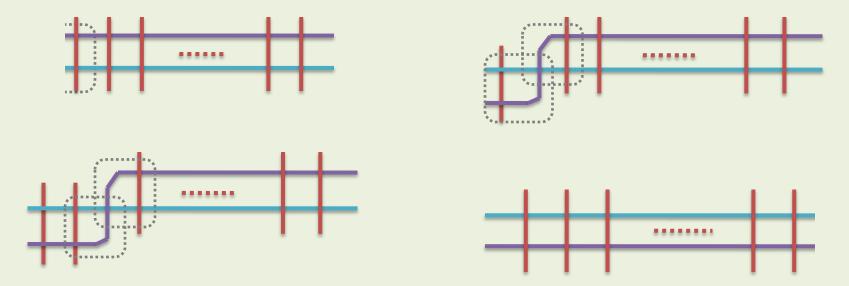


A Solution of YBE

• Solution for Heisenberg model:

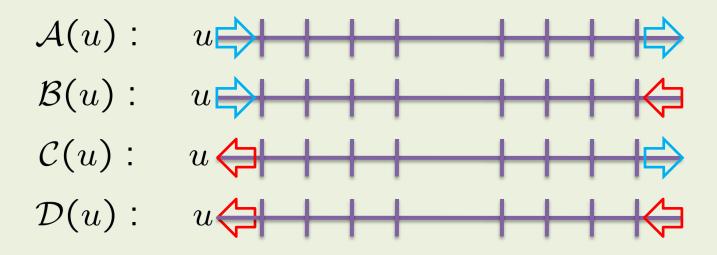
$$a(u,v) = u - v + i, \ b(u,v) = u - v, \ c(u,v) = i$$

• Transfer matrices commute \rightarrow Integrable



Algebraic Bethe ansatz

• Monodromy Matrix :

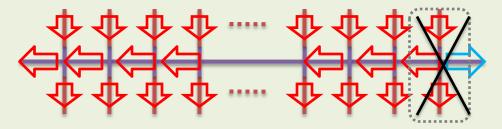


• Transfer matrix for the PBC

$$T(u) = \mathcal{A}(u) + \mathcal{D}(u)$$

Algebraic Bethe ansatz (cont'd)

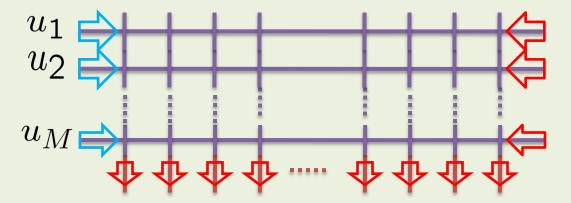
• Annihilation operator $C(u)|\Downarrow\Downarrow\Downarrow\cdots\Downarrow\rangle = 0$



• Creation operator $\mathcal{B}(u)$

Algebraic Bethe ansatz (cont'd)

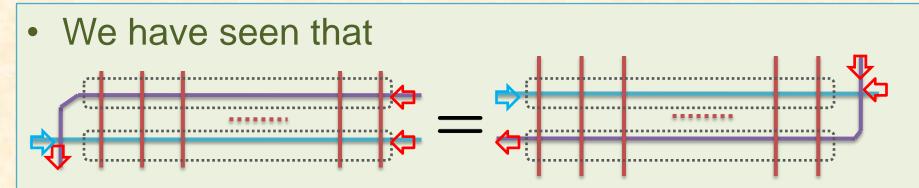
• Construct a general state $|\Psi(u_1, \cdots, u_M)\rangle = \mathcal{B}(u_1)\mathcal{B}(u_2)\cdots\mathcal{B}(u_M)|\Downarrow\Downarrow\Downarrow\cdots\Downarrow\rangle$



Act the transfer matrix

 $T(u)|\Psi(u_1,\cdots,u_M)\rangle = [\mathcal{A}(u) + \mathcal{D}(u)]\mathcal{B}(u_1)\mathcal{B}(u_2)\cdots\mathcal{B}(u_M)|\Downarrow\Downarrow\Downarrow\cdots\Downarrow\rangle$

YBE commutation relations



- $b(u,v)\mathcal{D}(v)\mathcal{B}(u)+c(u,v)\mathcal{B}(v)\mathcal{D}(u) = a(u,v)\mathcal{B}(u)\mathcal{D}(v)$ $b(u,v)\mathcal{A}(v)\mathcal{B}(u)+c(u,v)\mathcal{B}(v)\mathcal{A}(u) = a(u,v)\mathcal{B}(u)\mathcal{A}(v)$
- Act A & D on the state $|\Psi>$ using CR $\mathcal{D}(u)\mathcal{B}(u_1)\mathcal{B}(u_2)\cdots\mathcal{B}(u_M)|\Downarrow\Downarrow\Downarrow\cdots\Downarrow\rangle$ $\mathcal{D}(u)\mathcal{B}(u_j) = \frac{a(u,v)}{b(u,v)}\mathcal{B}(u_j)\mathcal{D}(u) - \frac{c(u,v)}{b(u,v)}\mathcal{B}(u)\mathcal{D}(u_j)$
- Many "unwanted terms" from A & D cancel each other if the Bethe ansatz equation is satisfied

Bethe ansatz Equation

M coupled equations

$$\left(\frac{\boldsymbol{u_j}+\frac{i}{2}}{\boldsymbol{u_j}-\frac{i}{2}}\right)^N = \prod_{k=1}^M \frac{\boldsymbol{u_j}-\boldsymbol{u_k}+i}{\boldsymbol{u_j}-\boldsymbol{u_k}-i}, \qquad j=1,\ldots,M$$

Eigenvalues of Conserved charges

$$Q_n = J \frac{i}{n} \sum_{j=1}^{M} \left[\left(\frac{u_j}{1} + \frac{i}{2} \right)^{-n} - \left(\frac{u_j}{2} - \frac{i}{2} \right)^{-n} \right], \quad E = J \sum_{j=1}^{M} \frac{1}{\frac{u_j^2}{1} + \frac{1}{4}}$$

• Taking logarithm

$$N \log \left(\frac{\boldsymbol{u_j} + \frac{i}{2}}{\boldsymbol{u_j} - \frac{i}{2}}\right) - \sum_{k=1}^M \log \frac{\boldsymbol{u_j} - \boldsymbol{u_k} + i}{\boldsymbol{u_j} - \boldsymbol{u_k} - i} = 2\pi i I_j$$

– Intergers I's are chosen such that total states are 2^N

Ferromagnetic vacuum

- J > 0 : *E* increases along with *M*
- "string" solution as $N \rightarrow \infty$:

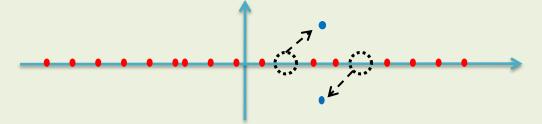
$$u_j^{(n)} = u_0 + \frac{n+1-2j}{2}i, \quad j = 1, \dots, n$$

$$E^{(n)} = J \sum_{j=1}^{n} \frac{1}{\left(\frac{u_{j}^{(n)}}{j}\right)^{2} + \frac{1}{4}} = \frac{n}{u_{0}^{2} + \frac{n^{2}}{4}} \le \frac{n}{u_{0}^{2} + \frac{1}{4}} = nE^{(1)}$$

• Low lying states are given by "long strings" rather than real roots

Antiferromagnetic vacuum

- J < 0 : *E* decreases along with *M*
- Vacuum is given by maximum real roots M=N/2
- Excited states : (ex) the first excited states
 Two Hole (spinon) state: spin Triplet
 - Two Hole and one 2-string state: spin Singlet



Good! But so what? It is just a toy model in unrealistic one dimension

2007-10-07

新潮

Hans Bethe (1906-2005)

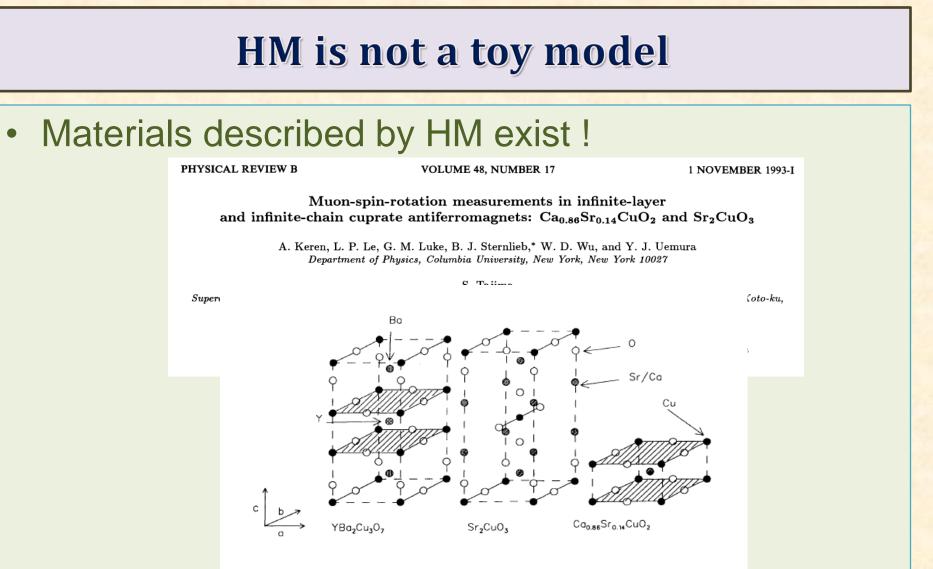
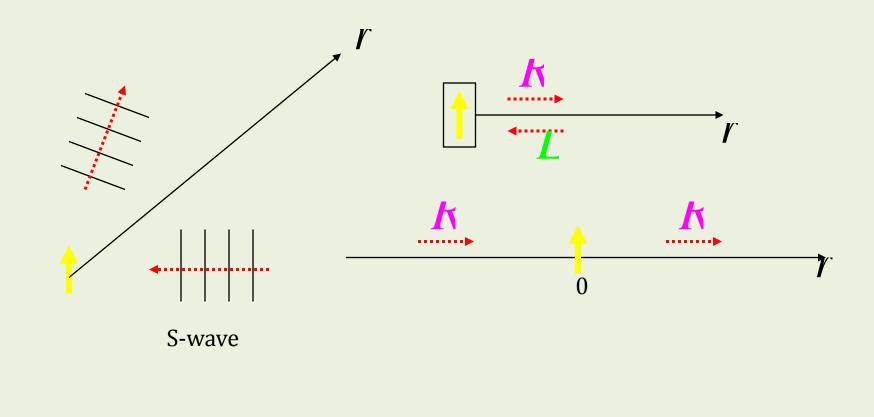


FIG. 1. Crystal structures of $YBa_2Cu_3O_7$, Sr_2CuO_3 , and $Ca_{0.86}Sr_{0.14}CuO_2$. The exchange couplings along layers and chains are emphasized by the solid lines.

1D is not unrealistic

There are many materials with effective one dimensional structure (ex) Kondo effect



Modern Application :

강한 상호작용과 초끈이론

AdS / CFT duality

• Type IIB superstrings on $AdS_5 \times S^5$ dual to $\mathcal{N} = 4$ $SU(N_c)$ Super-Yang-Mills gauge theory in 4d [Maldacena (1997)]

N=4 super-Yang-Mills theory

• 전자기:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}\left(\mathbf{E}^2 - \mathbf{B}^2\right) \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

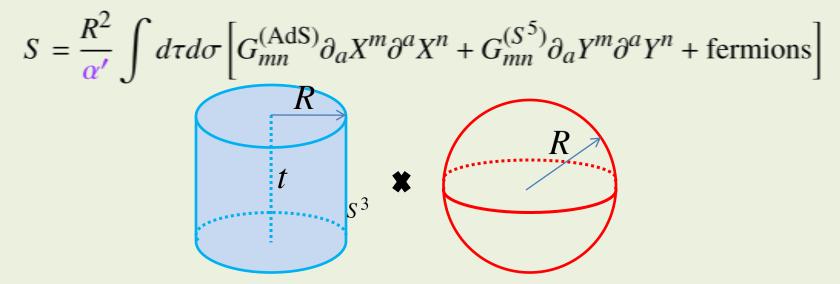
• Yang-Mills theory : $A_{\mu} = N_c \times N_c$ Matrix

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$$
$$\mathcal{L} = -\frac{1}{4} \operatorname{Tr} \left[F_{\mu\nu}F^{\mu\nu} \right] = \frac{1}{2} \sum_{a} \left(\mathbf{E}_{a}^{2} - \mathbf{B}_{a}^{2} \right)$$

• Supersymmetry : N=4 gauge supermultiplet $(A_{\mu}, \chi^{a}_{\alpha}, \Phi^{j}), \quad a = 1, \dots, 4; j = 1, \dots, 6$ $S = \frac{1}{\sigma^{2}} \int d^{4}x \operatorname{Tr} \left\{ \frac{1}{2} F^{2}_{\mu\nu} + (D_{\mu} \Phi^{i})^{2} - \frac{1}{2} ([\Phi^{i}, \Phi^{j}])^{2} + \dots \right\}$

Superstring on AdS background

• Type IIB superstrings on $AdS_5 \times S^5$ is described by a sigma model



• Full quantization is not understood

AdS / CFT duality

• Parameter relations:

$$g_s = \frac{4\pi\lambda}{N_c} \quad \& \quad \frac{R^2}{\alpha'} = \sqrt{\lambda}$$

with 't Hooft coupling $\lambda = N_c g^2$

- Free superstring theory corresponds to a planar limit of SYM $g_s \rightarrow 0 \equiv N_c \rightarrow \infty$ with fixed λ
- Quantitative check is tricky since it is a strong-weak duality
 - SYM perturbation for $\lambda << 1$
 - String perturbation for $\alpha' << 1 \implies \lambda >> 1$

Composite SYM operators

• Composite operators :

$$\mathcal{O}(x) = \mathrm{Tr}\left[\Phi^{i}F_{\mu\nu}\chi^{\alpha}(D_{\mu}\Phi^{j})\dots\right]$$

C

Conformal dimension :

$$\langle O_n(x)O_m(0)\rangle = \frac{O_{mn}}{|x|^{2\Delta_n}}$$

can be calculated by "renormalization group"

- We will focus on a special sector : $X \equiv \Phi_1 + i\Phi_2, Y \equiv \Phi_3 + i\Phi_4$ $\left\{ \operatorname{Tr} \left[X^N \right], \operatorname{Tr} \left[X^{N-1} Y \right], \operatorname{Tr} \left[X^{N-n-1} Y X^{n-1} Y \right], \dots, \operatorname{Tr} \left[Y^N \right] \right\}$
- Renormalization group mixes the composite operators $O_a = Z_a^b O_b$

Anomalous Dimension

- Conformal Dimension is $\Delta = N + \gamma$
- Anomalous dimension is given by a matrix

$$\Gamma = \frac{dZ}{d\log\Lambda} \cdot Z^{-1}$$

 One-Loop perturbation theory : Heisenberg model [Minahan & Zarembo]

$$\Gamma = -\frac{\lambda}{8\pi^2} \sum_{j=1}^{N} \left(\overrightarrow{\sigma}_j \cdot \overrightarrow{\sigma}_{j+1} - 1 \right)$$

$$Y \equiv \uparrow, \quad X \equiv \Downarrow$$

SYM Bethe ansatz

• Ferromagnetic vacuum : $| \Downarrow \Downarrow \lor \lor \lor \rangle \equiv \mathrm{Tr} \left[\mathbf{X}^{N} \right]$

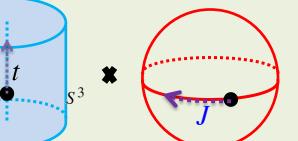
• Two "magnon" state :

$$|\Uparrow \Uparrow \Downarrow \lor \cdots \Downarrow \rangle + \ldots \equiv \operatorname{Tr} \left[\frac{Y^2 X^{N-2} + \ldots}{\frac{u_1 + \frac{i}{2}}{u_1 - \frac{i}{2}}} \right]^N = \frac{u_1 - u_2 + i}{u_1 - u_2 - i} = \frac{u_1 + \frac{i}{2}}{u_1 + \frac{i}{2}} \quad \text{with} \quad u_1 = -u_2$$

$$\left(\gamma = \frac{\lambda}{\pi^2} \sin^2 \frac{n\pi}{N-1} = \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2} \right) \quad \frac{u + \frac{i}{2}}{u - \frac{i}{2}} = e^{ip}$$

String theory : BMN Limit

• Point-like string moving in $AdS_5 \times S^5$ with very large angular momentum J >> 1

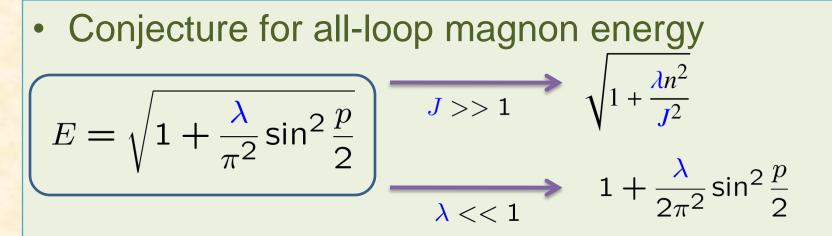


• Effective action : $S = \sqrt{\lambda} \int d\tau d\sigma \left[\frac{1}{2} (\partial_a x^i)^2 - \frac{J^2}{2\lambda} (x^i)^2 + \text{fermions} \right]$

Energy :
= Exact for all orders
$$E - J = \sum_{n = -\infty}^{\infty} \sqrt{1 + \frac{\lambda n^2}{J^2}} \hat{N}_n$$

- Exact for all orders
- Agrees with BAE when $\lambda << 1$

Non-perturbative SYM



Notice that higher conserved charges

$$Q_n = \frac{2^{n+1}}{n} \sin \frac{np}{2} \sin^n \frac{p}{2} \quad \Rightarrow \quad E = \sum_{n = \text{odd}} c_n Q_n$$

All-Loop Bethe ansatz

Conjecture 1 [Beisert & Staudacher]

$$\left(\frac{x^+(u_j)}{x^-(u_j)}\right)^N = \prod_{k=1}^M \frac{u_j - u_k + i}{u_j - u_k - i}$$

$$x^{\pm}(u) = x\left(u \pm \frac{i}{2}\right)$$
 with $x(u) \equiv \frac{1}{2}\left(u + \sqrt{u^2 - \frac{\lambda}{\pi^2}}\right)$

- Matches well with perturbative theories upto 3 loops
 Correction: Integrability and symmetry lead to
- Conjecture 2 [Beisert, Eden & Staudacher]

$$\left(\frac{x^+(u_j)}{x^-(u_j)}\right)^N = \prod_{k=1}^M \left[\frac{\sigma(u_j, u_k)}{u_j - u_k - i}\right]$$

Large coupling limit-classical string limit

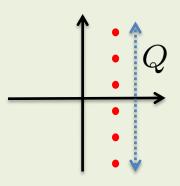
• In the classical string limit, the magnon energy is

$$E = \sqrt{1 + \frac{\lambda}{\pi^2}} \sin^2 \frac{p}{2} \approx \frac{\sqrt{\lambda}}{\pi} \sin \frac{p}{2}$$

and identified with a classical soliton configuration called "Giant magnon" [Hoffman&Maldacena]

"Bethe string" → "Dyonic giant magnon"

$$E^{(Q)} = \sqrt{Q^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}}$$



 S^2

비섭동적 양-밀즈 /초끈 이론

• String Bethe ansatz : SU(2) sector

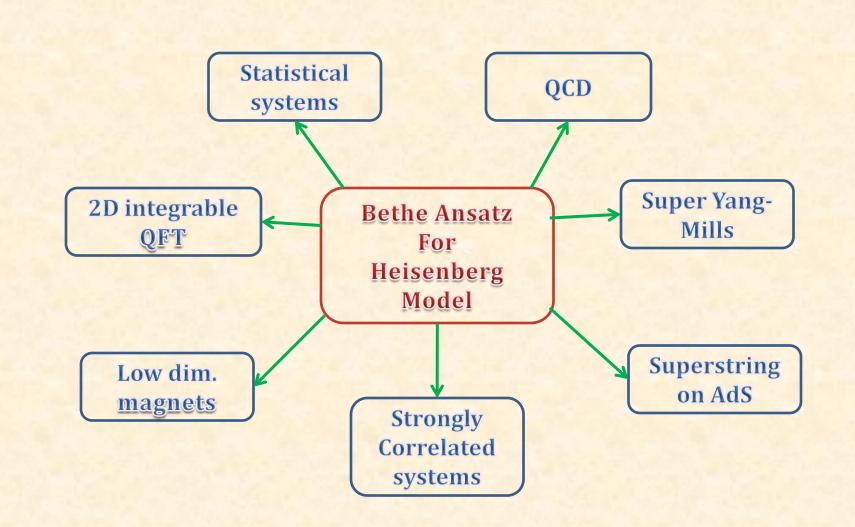
$$\left(\frac{x^+(u_j)}{x^-(u_j)}\right)^N = \prod_{k=1}^M \left[\frac{\sigma(u_j, u_k)}{u_j - u_k - i}\right]$$

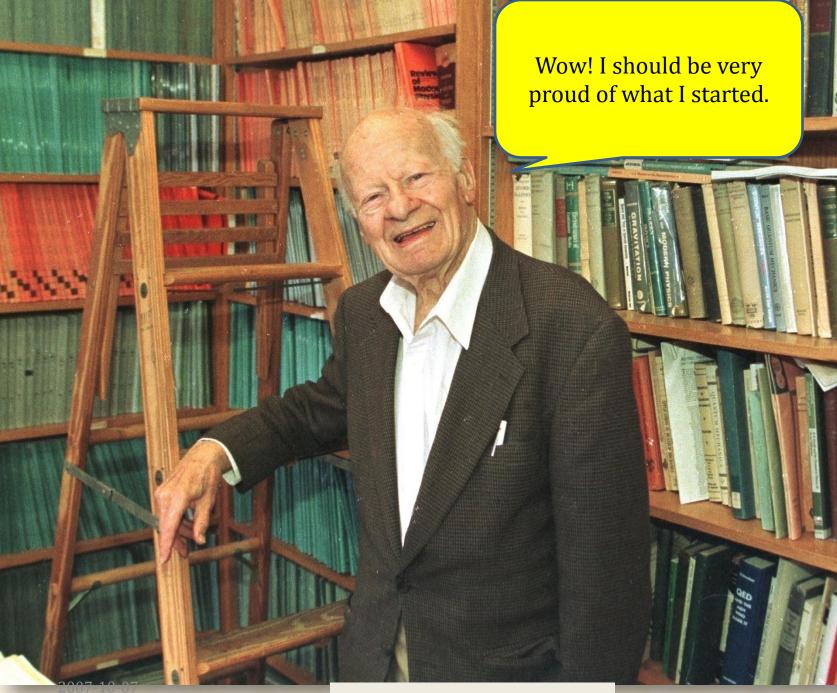
- All-loop Bethe ansatz for full sector PSU(2,2|4) are known [Beisert]
- Non-perturbative Yang-Mills theory is one of the most important problems in theoretical physics and we are moving closer to the goal !

Heisenberg Model is applicable to

- Scale dependence of composite (Wilson) operators in QCD
- High energy (Regge) behavior of scattering amplitudes in QCD
- Related to 2D quantum field theory like sine-Gordon model, HM can describe
 - Edge states in Fractional Quantum Hall
 - Mott insulator and transitions
 - Etc.
- Related many other "integrable lattice models"
 XXZ (6vertex), XYZ (8 vertex), RSOS,

Perspective





NHIM MEG

Hans Bethe (1906-2005)