Pólya Formula for Jordan Blocks

Changrim Ahn

Department of Physics
Ewha Womans University
Seoul, South Korea

Integrability in Gauge and String Theories (IGST)
Budapest, July 26, 2022

Based on Collaborations with

- Matthias Staudacher: "The integrable (hyper)eclectic spin chain", JHEP 02 (2021) 019
- Luke Corcoran and Matthias Staudacher: "Combinatorial solution of the eclectic spin chain", JHEP 03 (2022) 028
- Matthias Staudacher: "Spectrum of the Hypereclectic Spin Chain and Pólya Counting", arXiv:2207.02885

Strong twisted SYM theory

Start with planar, integrable, three parameter γ-deformed SYM and take Double Scaling limits to find simpler conformal field theories "(dynamical) Fishnet" models [Gürdoğan, Kazakov'15;Sieg, Wilhelm'16; Caetano, Gürdoğan, Kazakov'18]

$$
g=\frac{\sqrt{\lambda}}{4 \pi} \rightarrow 0 \quad ; \quad \xi_{j}=g q_{j}^{ \pm 1}=\text { finite }, \quad j=1,2,3
$$

Among 2^{3} possibilities, focus on $(+,+,+)$ which leads to

$$
\mathcal{L}_{\mathrm{int}}=N_{c} \operatorname{Tr}\left[\xi_{1} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi^{2} \phi^{3}+\xi_{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi^{3} \phi^{1}+\xi_{3} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi^{1} \phi^{2}\right]+\text { fermions }
$$

Eclectic spin chain

One-loop dilatation operators of single trace composite operators made of $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ are given by "Eclectic" spin chain Hamiltonian

$$
\mathbf{H}=\sum_{n=1}^{L}\left[\xi_{3} \mathbb{P}_{21}^{n, n+1}+\xi_{2} \mathbb{P}_{13}^{n, n+1}+\xi_{1} \mathbb{P}_{32}^{n, n+1}\right], \quad \mathbb{P}^{L, L+1} \equiv \mathbb{P}^{L, 1}
$$

acting on cyclic states e.g. ($\phi_{1} \equiv \mathbf{1}, \phi_{2} \equiv 2, \phi_{3} \equiv 3$)

$$
|\cdots \mathbf{1 2 3 2 1 2 1 2 1 3 1 2} \cdots\rangle_{\text {cyclic }}
$$

by a rule that only non-vanishing actions are

$$
\mathbb{P}_{21}|21\rangle=|12\rangle, \quad \mathbb{P}_{13}|13\rangle=|31\rangle, \quad \mathbb{P}_{32}|32\rangle=|23\rangle
$$

Integrability of Eclectic spin-chain
R-matrix: $\mathbf{R}(u): V \otimes V \rightarrow V \otimes V, \quad V=(\mathbf{1}, \mathbf{2}, \mathbf{3})$

- Yang-Baxter equation
- Monodromy and Transfer matrices

$$
\mathbf{M}_{a}(u)=\mathbf{R}_{a, L}(u) \mathbf{R}_{a, L-1}(u) \cdots \mathbf{R}_{a, 1}(u), \quad \mathbf{T}(u)=\operatorname{Tr}_{a} \mathbf{M}_{a}(u)
$$

- Integrability : $\left[\mathbf{T}(u), \mathbf{T}\left(u^{\prime}\right)\right]=0$
- Hamiltonian : $\mathbf{H}=\mathbf{U} \cdot \mathbf{T}^{\prime}(0)$, Shift op : $\mathbf{U}=\mathbf{T}(0)$

How to diagonalize \mathbf{H} ?

Standard algebraic Bethe ansatz fails. FCRs becomes useless (ex)

$$
\mathbf{R}_{21}^{12}(u-v) \mathbf{M}_{22}(v) \mathbf{M}_{12}(u)=\mathbf{M}_{22}(u) \mathbf{M}_{12}(v) \mathbf{R}_{22}^{22}(u-v)
$$

Numerical analysis based on Matlab and Mathematica show that it is non-diagonalizable due to formation of rich Jordan Block spectrum.

Instead of being diagonalized, the Hamiltonian is reduced to Jordan Normal Form (JNF)

Jordan Normal Form

Assume, for simplicity, that a matrix \mathbf{H} has only one eigenvalue E but several linearly independent true eigenvectors $\left|\psi_{j}^{1}\right\rangle$:

$$
(\mathbf{H}-E)\left|\psi_{j}^{1}\right\rangle=0, \quad j=1, \cdots, \gamma
$$

where γ is known as geometric multiplicity
For each eigenvector, generalized eigenvectors are associated

$$
(\mathbf{H}-E)^{m}\left|\psi_{j}^{m}\right\rangle=0, \quad m=1, \cdots, N_{j}
$$

Jordan chain is formed by successive action of $(\mathbf{H}-E)$

$$
\left|\psi_{j}^{N_{j}}\right\rangle \rightarrow\left|\psi_{j}^{N_{j}-1}\right\rangle \rightarrow\left|\psi_{j}^{N_{j}-2}\right\rangle \rightarrow \cdots \rightarrow\left|\psi_{j}^{2}\right\rangle \rightarrow\left|\psi_{j}^{1}\right\rangle \rightarrow 0
$$

which has one-to-one correspondence with one Jordan block in JNF

$$
J_{N_{j}}(E)=\left(\begin{array}{ccccc}
E & 1 & & & \\
& E & 1 & & \\
& & \ddots & \ddots & \\
& & & E & 1 \\
& & & & E
\end{array}\right), \quad N_{j} \times N_{j}
$$

Jordan Normal Form of Eclectic model

- There is only one eigenvalue E which is $E=0$ (See later)
- \mathbf{H} is reduced to direct sum of JNFs

$$
\mathbf{S}^{-1} \cdot \mathbf{H} \cdot \mathbf{S}=[\overbrace{J_{N_{1}} \oplus \cdots \oplus J_{N_{1}}}^{n_{1}}] \oplus \cdots \oplus[\overbrace{J_{N_{b}} \oplus \cdots \oplus J_{N_{b}}}^{n_{b}}]
$$

whose "Jordan spectrum" (sizes and multiplicities) is denoted by

$$
N_{1}^{n_{1}} N_{2}^{n_{2}} \cdots N_{b}^{n_{b}}, \quad N_{1}<N_{2}<\cdots<N_{b}
$$

Notations for sectors

- $(L, M, K)=\left[L_{1}, M_{1}, K\right]$ sector:
$\underline{L_{1} \equiv L-M}=\#$ of $\mathbf{1}$'s, $M_{1} \equiv M-K=\#$ of 2's, $K=\#$ of 3's
- Without loss of generality, we assume a filling condition $L_{1} \geq M_{1} \geq K$

Hyper-eclectic model

- Set $\xi_{1}=\xi_{2}=0, \xi_{3}=1$ with $L_{1} \geq M_{1} \geq K$,

$$
\mathbf{H}_{3}=\sum_{n=1}^{L} \mathbb{P}_{21}^{n, n+1}
$$

- Universality : Satisfying the filling condition, this has the same Jordan spectrum as the eclectic model with generic ξ 's (See later)
- It is easier to work with hypereclectic model to find Jordan spectrum numerically (ex) $M=5, K=1$

JB spectrum for $M=4, K=1$

L	Sizes of Jordan Blocks
6	37
10	$\begin{array}{llllll}3 & 7^{2} & 9 & 11 & 13 & 15\end{array}$
14	$\begin{array}{llllllllllll}3 & 7^{2} 9 & 11^{2} & 13^{2} & 15^{2} & 17 & 19^{2} & 21 & 23 & 25 & 27 & 31\end{array}$
18	$37^{2} 911^{2} 13^{2} 15^{2} 17^{2} 19^{2} 21^{2} 23^{2} 25^{2} 27^{2} 2931^{2} 3335373943$
8	157913
12	$\begin{array}{lllllllllll}15792 & 11 & 13^{2} & 15 & 17 & 19 & 21 & 25\end{array}$
16	$1579^{2} 1113^{3} 15^{2} 17^{2} 19^{2} 21^{2} 232^{2} 27 \begin{array}{llllll} & 29 & 31 & 33 & 37\end{array}$
20	$1579^{2} 1113^{3} 15^{2} 17^{3} 19^{3} 21^{3} 23^{2} 25^{3} 27^{2} 29^{2} 31^{2} 33^{2} 3537^{2} 3941434549 凶$
7	4610
11	$\begin{array}{lllllll}468 & 10^{2} & 12 & 14 & 16 & 18 & 22\end{array}$
15	$\begin{array}{llllllllllllll}468 & 10^{2} & 12^{2} & 14^{2} & 16^{2} & 18^{2} & 20 & 22^{2} & 24 & 26 & 28 & 30 & 34\end{array}$
19	$46810^{2} 12^{2} 14^{2} 16^{3} 18^{3} 20^{2} 22^{3} 24^{2} 26^{2} 28^{2} 30^{2} 3234^{2} 3638404246$
9	$4681012 \quad 16$
13	$\begin{array}{lllllllll}46810^{2} & 12^{2} & 14 & 16^{2} 18 & 20 & 22 & 24 & 28\end{array}$
17	$46810^{2} 12^{2} 14^{2} 16^{3} 18^{2} 20^{2} 22^{2} 24^{2} 26 \quad 28^{2} 30$
21	$46810^{2} 12^{2} 14^{2} 16^{3} 18^{3} 20^{3} 22^{3} 24^{3} 26^{2} 28^{3} 30^{2} 32^{2} 34^{2} 36^{2} 3840^{2} 4244464852$

- Some regularities can be noticed but why? Can we predict Jordan spectrum for any L, M, K ?

Understanding the Jordan spectrum

The first approach: Algebraic Bethe ansatz

Algebraic Bethe ansatz with finite q_{j} 's

$$
\Lambda(u)=\frac{(-1)^{M} q_{2} K}{q_{3}^{M-K}}(u+1)^{L} \prod_{n=1}^{M} \frac{u_{n}-u+1}{u-u_{n}}+\frac{q_{1}^{M-K}}{q_{2}^{L-M}} u^{L} \prod_{j=1}^{K} \frac{u-v_{j}+1}{u-v_{j}}
$$

$$
+(-1)^{K} \frac{q_{3}^{L-M}}{q_{1}^{K}} u^{L} \prod_{n=1}^{M} \frac{u-u_{n}+1}{u-u_{n}} \prod_{j=1}^{K} \frac{v_{j}-u+1}{u-v_{j}}
$$

$$
\left(\frac{u_{m}+1}{u_{m}}\right)^{L}=\frac{q_{3}{ }^{L}}{\left(q_{1} q_{2} q_{3}\right)^{K}} \prod_{\substack{n=1 \\ n \neq m}}^{M} \frac{u_{m}-u_{n}+1}{u_{m}-u_{n}-1} \prod_{j=1}^{K} \frac{u_{m}-v_{j}-1}{u_{m}-v_{j}}
$$

Bethe vectors

$$
1=\frac{\left(q_{2} q_{3}\right)^{L}}{\left(q_{1} q_{2} q_{3}\right)^{M}} \prod_{n=1}^{M} \frac{v_{k}-u_{n}+1}{v_{k}-u_{n}} \prod_{\substack{j=1 \\ j \neq k}}^{K} \frac{v_{k}-v_{j}-1}{v_{k}-v_{j}+1}
$$

$$
|\psi\rangle=\mathbf{M}_{13}\left(v_{1}\right) \cdots \mathbf{M}_{13}\left(v_{K}\right) \mathbf{M}_{12}\left(u_{1}\right) \cdots \mathbf{M}_{12}\left(u_{M}\right)|0\rangle
$$

Take a strong twist limit

$$
q_{k} \equiv \frac{\xi_{k}}{\varepsilon}, \quad u \rightarrow \varepsilon \bar{u}, \quad \text { with } \quad \varepsilon \rightarrow 0
$$

BA

$$
\begin{aligned}
\left(\frac{u_{m}+1}{u_{m}}\right)^{L} & =\frac{\varepsilon^{3 K-L} \cdot \xi_{3}^{L}}{\left(\xi_{1} \xi_{2} \xi_{3}\right)^{K}} \prod_{\substack{n=1 \\
n \neq m}}^{M} \frac{u_{m}-u_{n}+1}{u_{m}-u_{n}-1} \prod_{j=1}^{K} \frac{u_{m}-v_{j}-1}{u_{m}-v_{j}} \\
1 & =\frac{\varepsilon^{3 M-2 L} \cdot\left(\xi_{2} \xi_{3}\right)^{L}}{\left(\xi_{1} \xi_{2} \xi_{3}\right)^{M}} \prod_{n=1}^{M} \frac{v_{k}-u_{n}+1}{v_{k}-u_{n}} \prod_{\substack{j=1 \\
j \neq k}}^{K} \frac{v_{k}-v_{j}-1}{v_{k}-v_{j}+1}
\end{aligned}
$$

With exact solutions

$$
\begin{aligned}
u_{n} & =0+\varepsilon^{\alpha} \hat{u}_{n}, \quad n=1, \cdots, M_{1} \\
u_{M_{1}+k} & =-1+\varepsilon^{\beta} \hat{w}_{k}, \quad k=1, \cdots, K \\
v_{k} & =-2+\varepsilon^{\beta} \hat{w}_{k}+\varepsilon^{\gamma} \hat{v}_{k}, \quad k=1, \cdots, K
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\frac{L-M-K}{L-M+K}, \quad \beta=\frac{L-3(M-K)}{L-M+K}, \quad \gamma=2 L-3 M-\beta(K-1) \\
& \hat{w}_{k}=-\frac{\left(\xi_{1} \xi_{3}\right)^{\frac{M_{1}}{L-M_{1}}}}{\xi_{2}} \omega_{L-M_{1}}^{n_{k}+\frac{K-1}{2}}, \quad n_{k}=\left\{1, \cdots, L-M_{1}\right\}, \quad \omega_{n} \equiv e^{\frac{2 \pi i}{n}} \\
& \hat{u}_{n}=\left(\frac{\left(\xi_{1} \xi_{2} \xi_{3}\right)^{K}}{\xi_{3}{ }^{K}}(-1)^{M-1} \prod_{k=1}^{K} \hat{w}_{k}\right)^{\frac{1}{L}} \omega_{L}^{i_{n}}, \quad i_{n}=\{1, \cdots, L\}
\end{aligned}
$$

- This result does not apply for $3 M_{1} \geq L>2 M-K$ since $\alpha, \beta>0$.
- Eigenvalues of Transfer matrix: the L-th roots of unity

$$
\Lambda(u)=\exp \frac{2 \pi i}{L}\left[\sum_{k=1}^{K} n_{k}-\sum_{m=1}^{M_{1}} i_{m}+\frac{1}{2} M_{1}\left(M_{1}-1\right)+\frac{1}{2} K(K-1)\right]
$$

for Cyclic states : $[\cdots]=0 \bmod L$
Independent of ξ 's : already shows a glimpse of universality

George Pólya (Budapest, 1887 - Palo Alto, 1985)
"I am not good enough for physics and too good for philosophy; mathematics is in between."

Pólya's Formula I

Number of inequivalent necklaces of L beads with colors $\mathcal{A}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$
Physicists' derivation following [Spradlin, Volovich '05] Let $\hat{\ell}, \hat{m}, \hat{k}$ count $\#$ of beads with colors $\mathbf{1 , 2}, 3$ in $\left|\mathcal{A}_{1} \cdots \mathcal{A}_{L}\right\rangle$, resp. The generating function defined by

$$
Z(x, y, z)=\sum_{L=1}^{\infty} \operatorname{Tr}_{\mathcal{A} \otimes L}\left[\mathbf{P}_{\mathrm{cyc}} x^{\hat{\imath}} y^{\hat{m}} z^{\hat{k}}\right], \quad \mathbf{P}_{\mathrm{cyc}}=\frac{1}{L} \sum_{j=1}^{L} \mathbf{U}^{j}
$$

will count \# of cyclic states (necklaces)

- If $j=1,\left\langle\mathcal{A}_{1} \cdots \mathcal{A}_{L} \mid \mathcal{A}_{2} \cdots \mathcal{A}_{1}\right\rangle$ is non-zero only if $\mathcal{A}_{1}=\cdots=\mathcal{A}_{L}$
- If the greatest common divisor $(j, L)=2$, all $\mathcal{A}_{\text {even }}$ (and independently $\mathcal{A}_{\text {odd }}$) should have the same colors
- Similarly for $(j, L)=3,4, \cdots, L$, the counting function becomes

$$
Z(x, y, z)=\sum_{L=1}^{\infty} \frac{1}{L} \sum_{j=1}^{L}\left(\operatorname{Tr}_{\mathcal{A}}\left[x^{L /(j, L) \hat{l}} y^{\left.L /(j, L) \hat{m}_{z}^{L /(j, L) \hat{k}}\right]}\right]\right)^{(j, L)}
$$

- \# of j 's with $(j, L)=p$ is $\phi(L / p)$ where Euler's totient function $\phi(n)$ counts \# of coprimes to n which is less than n
G. Pólya's formula ($L=n p$)

$$
Z(x, y, z)=\sum_{n=1}^{\infty} \sum_{p=1}^{\infty} \frac{\phi(n)}{n p} \zeta\left(x^{n}, y^{n}, z^{n}\right)^{p}=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-\zeta\left(x^{n}, y^{n}, z^{n}\right)\right]
$$

where

$$
\zeta(x, y, z)=\operatorname{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}} y^{\hat{m}} z^{\hat{k}}\right]=x+y+z
$$

Expanding in x, y, z,

$$
Z(x, y, z)=\sum_{L=1}^{\infty} \sum_{M=1}^{L} \sum_{K=1}^{M} d(L, M, K) \cdot x^{L-M_{y} y^{M-K} z^{K}}
$$

$d(L, M, K)$ counts \# of cyclic states in (L, M, K) sector

L	M	K	naive counting	Pólya formula	Bethe ansatz
14	6	2	$6435 / 2$	3225	3225
16	6	2	$15015 / 2$	7518	7518
18	6	2	15470	15484	15484
20	6	2	29070	29088	29088
20	8	2	176358	176400	176400
20	10	4	1939938	1940064	1940064
21	9	3	1175720	1175730	1175730
22	6	2	$101745 / 2$	50895	50895
22	8	2	406980	407040	407040
22	10	4	6172530	6172740	6172740
24	6	2	$168245 / 2$	84150	84150
24	8	2	$1716099 / 2$	858132	858132
24	9	3	456264	4576278	4576278
24	10	4	17160990	17161320	17161320

naive counting : $\frac{1}{L} \frac{L!}{(L-M)!(M-K)!K!}$

However, Bethe ansatz fails for Jordan spectrum

All Bethe states collapse into only one state called "Locked state"

$$
\begin{aligned}
|\psi\rangle & =\mathcal{M}_{13}\left(v_{1}\right) \cdots \mathcal{M}_{13}\left(v_{K}\right) \mathcal{M}_{12}\left(u_{M}\right) \mathcal{M}_{12}\left(u_{1}\right) \cdots \mathcal{M}_{12}\left(u_{M}\right)|0\rangle \\
& \rightarrow \sum_{n=1}^{L}|\cdots 11 \stackrel{\substack{[n]}}{\perp} 2 \cdots 23 \cdots 311 \cdots\rangle \quad \text { as } \quad \varepsilon \rightarrow 0
\end{aligned}
$$

The same conclusion has been obtained using coordinate BA In addition, generalized eigenvectors associated with the Locked state have been obtained
[Nieto García,Wyss '21; Nieto García '22]
But Integrability can not provide other true eigenvectors which exist for each Jordan block

Understanding the Jordan spectrum

The second approach : Combinatorics and Linear Algebra

Hyper-eclectic model with $K=1$
Consider a generic cyclic state

$$
|\underbrace{1 \cdots 1}_{n_{0}} 2 \underbrace{1 \cdots 1}_{n_{1}} 2 \underbrace{1 \cdots 1}_{n_{2}} \cdots 2 \underbrace{1 \cdots 1}_{n_{M_{1}}} 3\rangle
$$

Define a level S as sum of \# of $\mathbf{1}$ on RHS of each $\mathbf{2}$

$$
\Rightarrow \quad \mathrm{S}=\left(n_{1}+\cdots+n_{M_{1}}\right)+\left(n_{2}+\cdots+n_{M_{1}}\right)+\cdots+n_{M_{1}}
$$

Hamiltonian acting on this state

$$
\mathbf{H}_{3}=\sum_{n=1}^{L} \mathbb{P}_{21}^{n, n+1}
$$

moves each $\mathbf{2}$ to Right by one step, hence

$$
\mathrm{H}_{3}: \mathrm{S} \rightarrow \mathrm{~S}-1
$$

$\mathrm{S}_{\max }=L_{1} M_{1}$ is given by "anti-Locked" state $|2 \cdots 21 \cdots 13\rangle$ $S_{\min }=0$ is given by the Locked state $|1 \cdots 12 \cdots 23\rangle$

A Jordan chain with length $L_{1} M_{1}+1$ is formed by acting \mathbf{H}_{3}

$$
|2 \cdots 21 \cdots 13\rangle \rightarrow|2 \cdots 2121 \cdots 13\rangle \rightarrow \cdots \rightarrow|1 \cdots 12 \cdots 23\rangle \rightarrow 0
$$

(Ex) $M=5, K=1$

$(E x)(7,3,1)$ sector

The first Jordan chain by \mathbf{H}_{3} is from anti-Locked to Locked state

$$
|2211113\rangle^{S=8} \rightarrow|2121113\rangle^{7} \rightarrow|1221113\rangle^{6}+|2112113\rangle^{6} \rightarrow
$$

$$
2|1212113\rangle^{5}+|2111213\rangle^{5} \rightarrow 3|1211213\rangle^{4}+2|1122113\rangle^{4}+|2111123\rangle^{4}
$$

$$
\rightarrow 5|1121213\rangle^{3}+4|1211123\rangle^{3} \rightarrow 9|1121123\rangle^{2}+5|1112213\rangle^{2} \rightarrow
$$

$$
14|1112123\rangle^{1} \rightarrow 14|1111223\rangle^{0} \rightarrow 0
$$

The second Jordan chain can exist if it starts at $S=6$

$$
a|1221113\rangle^{6}+b|2112113\rangle^{6} \rightarrow(a+b)|1212113\rangle^{5}+b|2111213\rangle^{5} \rightarrow
$$

$$
\cdots \rightarrow(3 a+6 b)|1121123\rangle^{2}+(2 a+3 b)|1112213\rangle^{2} \rightarrow(5 a+9 b)|1112123\rangle^{1}
$$

With $5 a+9 b=0$, we can find the second true eigenvector and JB of size 5

$$
-9|1221113\rangle^{6}+5|2112113\rangle^{6} \rightarrow \cdots \rightarrow|1121123\rangle^{2}-|1112213\rangle^{2}
$$

The third Jordan chain can start at $S=4$ since there are three vectors

$$
\begin{gathered}
a^{\prime}|1211213\rangle^{4}+b^{\prime}|1122113\rangle^{4}+c^{\prime}|2111123\rangle^{4} \rightarrow \\
\left(a^{\prime}+b^{\prime}\right)|1121213\rangle^{3}+\left(a^{\prime}+c^{\prime}\right)|1211123\rangle^{3}
\end{gathered}
$$

With $b^{\prime}=c^{\prime}=-a^{\prime}$, we can find the third true eigenvector and JB of size 1

$$
|1211213\rangle^{4}-|1122113\rangle^{4}-|2111123\rangle^{4}
$$

- If top vector in a Jordan chain starts at level S , the bottom vector (true eigenvector) occurs at level $\mathrm{S}_{\text {max }}-\mathrm{S} \equiv \overline{\mathrm{S}}$
- Length of the Jordan chain: $2 \mathrm{~S}-\mathrm{S}_{\max }+1$
- The Jordan spectrum : $\operatorname{JNF}(7,3,1)=159$

Jordan spectrum of $K=1$

- (Def) $\operatorname{dim}_{\mathrm{S}}$ be the dimension of a vector space with level S i.e. \# of linearly independent states at the level S
- New Jordan chains are formed at level S if $\boldsymbol{\operatorname { d i m }}_{\mathrm{S}}>\operatorname{dim}_{\mathrm{S}+1}$ for $\mathrm{S} \geq \frac{\mathrm{S}_{\max }}{2}$
- In principle, unexpected shortening may occur somewhere in the chain and a new chain may start again. Although we have no mathematical proof, we checked that this never occurs for many explicit cases
- Multiplicity of Jordan blocks: $\boldsymbol{\operatorname { d i m }}_{\mathrm{S}}-\operatorname{dim}_{\mathrm{S}+1}$ for $\mathrm{S} \geq \frac{\mathrm{S}_{\text {max }}}{2}$
(Ex) $(7,3,1)$ sector

S	8	7	6	5	4	3	2	1	0
$\operatorname{dim}_{\mathrm{S}}$	1	1	2	2	3	2	2	1	1
$\operatorname{dim}_{\mathrm{S}}-\operatorname{dim}_{\mathrm{S}+1}$	1	0	1	0	1	-	-	-	-

- Jordan spectrum is encoded in $\boldsymbol{\operatorname { d i m }}_{5}$!

Gaussian binomial coefficients

$$
\begin{gathered}
\mathrm{S}(|1 \cdots 12 \overbrace{1 \cdots 1}^{n_{1}} 2 \overbrace{1 \cdots 1}^{n_{2}} \cdots 2 \overbrace{1 \cdots 1}^{n_{M_{1}}} 3\rangle) \\
=\left(n_{1}+\cdots+n_{M_{1}}\right)+\left(n_{2}+\cdots+n_{M_{1}}\right)+\cdots+n_{M_{1}}
\end{gathered}
$$

- $\boldsymbol{\operatorname { d i m }}_{\mathrm{S}}=\#$ of partitions of S into at most M_{1} parts, each $\leq L_{1}$
- This restricted partition is generated by Gaussian binomial coefficients

$$
\left[\begin{array}{c}
L_{1}+M_{1} \\
M_{1}
\end{array}\right]_{q}=\prod_{k=1}^{M-1} \frac{[L-k]_{q}}{[k]_{q}}=\sum_{\mathrm{S}=0}^{L_{1} M_{1}} \operatorname{dim}_{\mathrm{S}} q^{\mathrm{S}-L_{1} M_{1} / 2}
$$

in terms of q-number defined by

$$
[n]_{q}=\frac{q^{n / 2}-q^{-n / 2}}{q^{1 / 2}-q^{-1 / 2}}=q^{(n-1) / 2}+\cdots q^{-(n-1) / 2}
$$

- One can show : $\operatorname{dim}_{\mathrm{S}}=\operatorname{dim}_{\overline{\mathrm{S}}}, \quad\left(\overline{\mathrm{S}} \equiv \mathrm{S}_{\max }-\mathrm{S}\right)$
- (Def) Generating function as trace over all states in ($L, M, 1$) sector

$$
Z_{L, M}(q)=\operatorname{Tr}\left[q^{S-S_{\max } / 2}\right]
$$

- Contribution of a Jordan chain from S to \bar{S} to $Z_{L, M}$ $q^{\mathrm{S}-\mathrm{S}_{\text {max }} / 2}+\cdots+q^{-\mathrm{S}+\mathrm{S}_{\text {max }} / 2}=\left[2 \mathrm{~S}+1-\mathrm{S}_{\max }\right]_{q}=[\text { Length of } \mathrm{JB}]_{q}$
- Generating function is the sum of all possible Jordan chains

$$
Z_{L, M}(q)=\prod_{k=1}^{M-1} \frac{[L-k]_{q}}{[k]_{q}}=\sum_{j=1}^{b} n_{j}\left[N_{j}\right]_{q} \quad \Rightarrow \quad \mathrm{JNF}=N_{1}^{n_{1}} \cdots N_{b}^{n_{b}}
$$

Jordan spectrum of $K>1$

- (Def) Partition function

$$
\boldsymbol{b i n}(x, y, z, q)=\operatorname{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}} y^{\hat{m}} z^{1} q^{s-\hat{\ell} \hat{m} / 2}\right]
$$

where \mathcal{A} is infinite "colors", a set of all cyclic states with single 3

$$
\mathcal{A}=\{3,13,23,113,123,213,223,1113,1123,1213,2113, \cdots\}
$$

- which can be easily computed to be

$$
\operatorname{bin}(x, y, z, q)=\sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty} Z_{\ell+m, m}(q) x^{\ell} y^{m} z
$$

(cf) Pólya I formula with colors $\mathcal{A}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$

$$
\zeta(x, y, z)=\operatorname{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}} y^{\hat{m}} z^{\hat{k}}\right]=x+y+z
$$

Pólya's Formula II

Count necklaces with K beads of infinite colors $\mathcal{A}=\{3,13,23, \cdots\}$ The generating function defined by
$Z(x, y, z, q)=\sum_{K=1}^{\infty} \operatorname{Tr}_{\mathcal{A}^{\otimes} K}\left[\mathbf{P}_{\mathrm{cyc}} x^{\hat{l}} y^{\hat{m}} z^{\hat{k}} q^{\mathrm{S}-\hat{\ell} \cdot \hat{m} / 2}\right], \quad \mathbf{P}_{\mathrm{cyc}}=\frac{1}{K} \sum_{j=1}^{K} \mathbf{U}^{j}$
will count \# of cyclic states (necklaces)
The rest steps are identical as before and we get

$$
Z(x, y, z, q)=-\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1-\boldsymbol{\operatorname { b i n }}\left(x^{n}, y^{n}, z^{n}, q^{n}\right)\right]
$$

Expanding, we obtain generating function $Z_{L, M, K}(q)$

$$
Z(x, y, z, q)=\sum_{L=1}^{\infty} \sum_{M=1}^{L} \sum_{K=1}^{M} z_{L, M, K}(q) \cdot x^{L-M} y^{M-K} z^{K}
$$

which can give the JNF spectrum

$$
Z_{L, M, K}(q)=\sum_{j=1}^{b} n_{j}\left[N_{j}\right]_{q} \quad \Rightarrow \quad \mathrm{JNF}=N_{1}^{n_{1}} \cdots N_{b}^{n_{b}}
$$

Examples: Using Mathematica, it is easy to read off

- $(8,4,2)$

$$
Z_{8,4,2}(q)=4[1]_{q}+3[3]_{q}+4[5]_{q}+[7]_{q}+[9]_{q} \quad \Rightarrow \quad \mathrm{JNF}=1^{4} 3^{3} 5^{4} 79
$$

$-(9,6,3)$
$Z_{9,6,3}(q)=10[1]_{q}+8[2]_{q}+10[3]_{q}+14[4]_{q}+4[5]_{q}+3[6]_{q}+4[7]_{q}+[10]_{q}$ $\Rightarrow \quad \mathrm{JNF}=1^{10} 2^{8} 3^{10} 4^{14} 5^{4} 6^{3} 7^{4} 10$

Universality

We claim that the eclectic and hyper-eclectic models have the same Jordan spectrum.

Hamiltonian of the eclectic model

$$
\mathbf{H}=\mathbf{H}_{\mathbf{3}}+\mathbf{H}_{\mathbf{1}}+\mathbf{H}_{\mathbf{2}}, \quad \mathbf{H}_{\mathbf{1}}=\xi_{1} \sum_{n=1}^{L} \mathbb{P}_{32}^{n, n+1}, \quad \mathbf{H}_{\mathbf{2}}=\xi_{2} \sum_{n=1}^{L} \mathbb{P}_{13}^{n, n+1}
$$

One can check that

$$
\mathbf{H}_{3}: S \rightarrow S-1, \quad \mathbf{H}_{2}: S \rightarrow S-M_{1}, \quad \mathbf{H}_{1}: S \rightarrow S-L_{1}
$$

It is obvious that the eigenvector of the hyper-eclectic model at the level $\overline{\mathrm{S}}=\mathrm{S}_{\text {max }}-\mathrm{S}$ becomes that of the eclectic model if $M_{1}>\overline{\mathrm{S}}$

This means for cases with relatively large number of 2 's, two models share the same Jordan blocks with relatively large sizes

If not, one can modify the top vector of the hyper-eclectic model which becomes an eigenvector by acting \mathbf{H}
(Ex) $(7,3,1)$ again: We showed above that

$$
\mathbf{H}_{3}{ }^{5}\left(-9|1221113\rangle^{6}+5|2112113\rangle^{6}\right)=0
$$

This can be extended to

$$
\mathbf{H}^{5}\left(-9|1221113\rangle^{6}+5|2112113\rangle^{6}+\gamma|1212113\rangle^{5}\right)=0 \quad \text { if } \gamma=3 \xi_{2}
$$

Conjecture: One can construct top vectors of the eclectic model from those of the hyper-eclectic model by adding vectors with lower level S

But we have no rigorous mathematical proof yet in general context.

Summary and Future directions

- We have investigated the (hyper)-eclectic models, simple integrable models appeared in the context of strongly twisted $\mathcal{N}=4$ SYM
- We showed the BAE can be consistent with Pólya formula which is a non-trivial check for the BAE and its solutions
- The integrability fails to explain Jordan spectrum
- We used mathematics (combinatorics and linear algebra) to obtain complete Jordan spectrum
- Applications: Logarithmic CFTs, Correlation functions of Fishnet theory, etc.
- Complete mathematical proof of no unexpected shortening and universality assumptions

- Applying our Pólya formula to other non-Hermitian spin chain model with integrability

-Systematic construction of eigenvectors

(Ex) $(10,5,1)$
Jordan spectrum : $15^{2} 79^{2} 1113^{2} 151721$

Complete eigenvectors

```
{7 | 1122122113>- 10 | 1122211213>-7 | 1211222113> + 3 | 1212121213> + 10 | 1212211123> + | 1221112213> -
    9 | 1221121123> + 4 | 2111221213>-4 | 2112112213>-4 | 2112121123> + 8 | 2121112123>-8 | 22111111223>,
2 | 1112222113>- 2 | 1121221213> + 3 | 1122121123> + 2 | 1211212213> - | 1211221123> -
    3|1212112123> + 5 | 1221111223> - 2 | 2111122213> + 2 | 2111212123> - 2 | 2112111223>, 
3 | 1112221213>-3 | 1121212213>-3 | 1121221123> + 5 | 1122112123> + 3 | 1211122213> + | 1211212123> -
    5 | 1212111223>-4 | 2111122123> + 4 | 2111211223>, 2 | 1122112213> - 3 | 1122121123>- 2 | 1211212213> +
    3 | 1211221123> + | 1212112123>- 3 | 1221111223> + 2 | 2111122213>- 2 | 2111212123> + 2 | 2112111223> ,
    | 1112212213> - | 1121122213> - | 1121212123> + 3 | 1122111223> + 2 | 1211122123> - 2 | 1211211223>,
    | 1111222213> - | 1112122123> + | 1121121223> - | 12111112223> ,
    | 1112221123> - | 1121212123> + 2 | 1122111223> + | 1211122123> - | 1211211223>,
    | 1112212123> - | 1121122123> - | 1121211223> + 2 | 1211121223> - 2 | 2111112223>,
    | 1111222123> - | 1112121223> + | 1121112223>,
    | 1112211223> - | 1121121223> + | 12111112223> , | 1111221223> - | 1112112223> , | 1111122223>}
```


Thank you for attention!

