Pólya Formula for Jordan Blocks

Changrim Ahn

Department of Physics Ewha Womans University Seoul, South Korea

Integrability in Gauge and String Theories (IGST) Budapest, July 26, 2022

Based on Collaborations with

- Matthias Staudacher : "The integrable (hyper)eclectic spin chain", JHEP 02 (2021) 019
- Luke Corcoran and Matthias Staudacher : "Combinatorial solution of the eclectic spin chain", JHEP 03 (2022) 028
- Matthias Staudacher : "Spectrum of the Hypereclectic Spin Chain and Pólya Counting", arXiv:2207.02885

Strong twisted SYM theory

Start with planar, integrable, three parameter γ -deformed SYM and take Double Scaling limits to find simpler conformal field theories "(dynamical) Fishnet" models [Gürdoğan,Kazakov'15;Sieg,Wilhelm'16; Caetano,Gürdoğan,Kazakov'18]

$$g=rac{\sqrt{\lambda}}{4\pi}
ightarrow 0$$
 ; $\xi_j=gq_j^{\pm 1}=$ finite, $j=1,2,3$

Among 2^3 possibilities, focus on (+,+,+) which leads to

$$\mathcal{L}_{int} = N_c \operatorname{Tr} \left[\frac{\xi_1}{2} \phi_2^{\dagger} \phi_3^{\dagger} \phi^2 \phi^3 + \frac{\xi_2}{3} \phi_3^{\dagger} \phi_1^{\dagger} \phi^3 \phi^1 + \frac{\xi_3}{4} \phi_1^{\dagger} \phi_2^{\dagger} \phi^1 \phi^2 \right] + \text{fermions}$$

$$\overset{2}{3} \times \overset{3}{2} \overset{3}{1} \times \overset{1}{3} \overset{1}{2} \times \overset{2}{1}$$

◆□ → < □ → < 亘 → < 亘 → < 亘 → < 亘 → ○ Q (~ 3/35

Eclectic spin chain [Ipsen,Staudacher,Zippelius '19]

One-loop dilatation operators of single trace composite operators made of $\{\phi_1, \phi_2, \phi_3\}$ are given by "Eclectic" spin chain Hamiltonian

$$\mathbf{H} = \sum_{n=1}^{L} \left[\xi_3 \mathbb{P}_{21}^{n,n+1} + \xi_2 \mathbb{P}_{13}^{n,n+1} + \xi_1 \mathbb{P}_{32}^{n,n+1} \right], \qquad \mathbb{P}^{L,L+1} \equiv \mathbb{P}^{L,1}$$

acting on cyclic states e.g. $(\phi_1 \equiv \mathbf{1}, \phi_2 \equiv \mathbf{2}, \phi_3 \equiv \mathbf{3})$

 $|\cdots 1232121312\cdots\rangle_{\mathrm{cyclic}}$

by a rule that only non-vanishing actions are

 $\mathbb{P}_{21}|21\rangle = |12\rangle, \quad \mathbb{P}_{13}|13\rangle = |31\rangle, \quad \mathbb{P}_{32}|32\rangle = |23\rangle$

Integrability of Eclectic spin-chain *R*-matrix: $\mathbf{R}(u) : V \otimes V \rightarrow V \otimes V$, $V = (\mathbf{1}, \mathbf{2}, \mathbf{3})$

- Yang-Baxter equation
- Monodromy and Transfer matrices

$$\mathsf{M}_{\mathsf{a}}(u) = \mathsf{R}_{\mathsf{a},\mathsf{L}}(u)\mathsf{R}_{\mathsf{a},\mathsf{L}-1}(u)\cdots\mathsf{R}_{\mathsf{a},1}(u), \qquad \mathsf{T}(u) = \operatorname{Tr}_{\mathsf{a}}\mathsf{M}_{\mathsf{a}}(u)$$

- Integrability : $[\mathbf{T}(u), \mathbf{T}(u')] = 0$
- Hamiltonian : $\mathbf{H} = \mathbf{U} \cdot \mathbf{T}'(0)$, Shift op : $\mathbf{U} = \mathbf{T}(0)_{\mathcal{O}}$, $\mathbf{U} = \mathbf{T}(0)_{\mathcal{O}}$

How to diagonalize **H**?

Standard algebraic Bethe ansatz fails. FCRs becomes useless (ex)

$$\mathsf{R}^{12}_{21}(u-v)\mathsf{M}_{22}(v)\mathsf{M}_{12}(u) = \mathsf{M}_{22}(u)\mathsf{M}_{12}(v)\mathsf{R}^{22}_{22}(u-v)$$

Numerical analysis based on Matlab and Mathematica show that it is **non-diagonalizable** due to formation of rich Jordan Block spectrum.

Instead of being diagonalized, the Hamiltonian is reduced to Jordan Normal Form (JNF)

Jordan Normal Form

Assume, for simplicity, that a matrix **H** has only one eigenvalue *E* but several linearly independent *true* eigenvectors $|\psi_i^1\rangle$:

$$(\mathbf{H} - E)|\psi_j^1\rangle = 0, \qquad j = 1, \cdots, \gamma$$

where γ is known as geometric multiplicity For each eigenvector, generalized eigenvectors are associated

$$(\mathbf{H}-E)^m|\psi_j^m\rangle=0, \qquad m=1,\cdots,N_j$$

Jordan chain is formed by successive action of (H - E)

$$|\psi_j^{N_j}\rangle \rightarrow |\psi_j^{N_j-1}\rangle \rightarrow |\psi_j^{N_j-2}\rangle \rightarrow \cdots \rightarrow |\psi_j^2\rangle \rightarrow |\psi_j^1\rangle \rightarrow 0$$

which has one-to-one correspondence with one Jordan block in JNF

$$J_{N_j}(E) = \begin{pmatrix} E & 1 & & \\ & E & 1 & \\ & \ddots & \ddots & \\ & & E & 1 \\ & & & E \end{pmatrix}, \qquad N_j \times N_j$$

7/35

Jordan Normal Form of Eclectic model

- There is only one eigenvalue *E* which is E = 0 (See later)
- H is reduced to direct sum of JNFs

$$\mathbf{S}^{-1} \cdot \mathbf{H} \cdot \mathbf{S} = [\overbrace{J_{N_1} \oplus \cdots \oplus J_{N_1}}^{n_1}] \oplus \cdots \oplus [\overbrace{J_{N_b} \oplus \cdots \oplus J_{N_b}}^{n_b}]$$

whose "Jordan spectrum" (sizes and multiplicities) is denoted by

$$N_1^{n_1} N_2^{n_2} \cdots N_b^{n_b}, \qquad N_1 < N_2 < \cdots < N_b$$

Notations for sectors

-
$$(L, M, K) = [L_1, M_1, K]$$
 sector:
 $\underline{L_1 \equiv L - M} = \#$ of **1**'s, $\underline{M_1 \equiv M - K} = \#$ of **2**'s, $K = \#$ of **3**'s

- Without loss of generality, we assume a filling condition $\underline{L_1 \geq M_1 \geq K}$

Hyper-eclectic model

- Set $\xi_1 = \xi_2 = 0, \xi_3 = 1$ with $L_1 \ge M_1 \ge K$,

$$\mathsf{H}_{3} = \sum_{n=1}^{L} \mathbb{P}_{21}^{n,n+1}$$

- **Universality** : Satisfying the filling condition, this has the same Jordan spectrum as the eclectic model with generic ξ 's (See later)
- It is easier to work with hypereclectic model to find Jordan spectrum numerically (ex) $M=5,\,K=1$

Sizes of Jordan Blocks
1 5 7 9 13
$1 \ 5^2 \ 9^2 \ 11 \ 13 \ 17$
$1 5^2 \ 7 9^2 \ 11 13^2 \ 15 17 \qquad 21$
$1^2 5^2 7 9^3 11 13^3 15 17^2 19 21 25$
$1 5^3 \ 7 9^3 \ 11^2 \ 13^3 \ 15^2 \ 17^3 \ 19 21^2 \ 23 25 \qquad 29$
$1^2 5^3 7 9^4 11^2 13^4 15^2 17^4 19^2 21^3 23 25^2 27 29 33$
$1^2 \ 5^3 \ 7^2 \ 9^4 \ 11^2 \ 13^5 \ 15^3 \ 17^4 \ 19^3 \ 21^4 \ 23^2 \ 25^3 \ 27 \ \ 29^2 \ 31 \ \ 33 \ \ \ 37$
$1^{2} 5^{4} 7 9^{5} 11^{3} 13^{5} 15^{3} 17^{6} 19^{3} 21^{5} 23^{3} 25^{4} 27^{2} 29^{3} 31 33^{2} 35 37 41$
$1^{2} 5^{4} 7^{2} 9^{5} 11^{3} 13^{6} 15^{4} 17^{6} 19^{4} 21^{6} 23^{4} 25^{5} 27^{3} 29^{4} 31^{2} 33^{3} 35 37^{2} 39 41 45$
$1^3 \ 5^4 \ 7^2 \ 9^6 \ 11^3 \ 13^7 \ 15^4 \ 17^7 \ 19^5 \ 21^7 \ 23^4 \ 25^7 \ 27^4 \ 29^5 \ 31^3 \ 33^4 \ 35^2 \ 37^3 \ 39 \ \ 41^2 \ 43 \ 45 \qquad 49$
$1^2 \ 5^5 \ 7^2 \ 9^6 \ 11^4 \ 13^7 \ 15^5 \ 17^8 \ 19^5 \ 21^8 \ 23^6 \\ \texttt{=} 25^7 \ 27^5 \ 29^7 \ 31^4 \ 33^5 \ 35^3 \ 37^4 \ 39^2 \ 41^3 \ 43 \ 45^2 \ 47 \ 49 \ 53 \ 53^6 \\ \texttt{=} 35^7 \ 10^6 \\ \texttt{=} 35^7 \ 10^6$

9/35

JB spectrum for M = 4, K = 1

L	Sizes of Jordan Blocks
6	3 7
10	$3 7^2 9 11 13 15 19$
14	$3\ 7^2\ 9\ 11^2\ 13^2\ 15^2\ 17\ 19^2\ 21\ 23\ 25\ 27\ 31$
18	$3\ 7^2\ 9\ 11^2\ 13^2\ 15^2\ 17^2\ 19^2\ 21^2\ 23^2\ 25^2\ 27^2\ 29\ 31^2\ 33\ 35\ 37\ 39\ 43$
8	1579 13
12	$1\ 5\ 7\ 9^2\ 11\ 13^2\ 15\ 17\ 19\ 21\ 25$
16	$1\ 5\ 7\ 9^2\ 11\ 13^3\ 15^2\ 17^2\ 19^2\ 21^2\ 23\ \ 25^2\ 27\ \ 29\ \ 31\ \ 33\ \ \ 37$
20	$1\ 5\ 7\ 9^2\ 11\ 13^3\ 15^2\ 17^3\ 19^3\ 21^3\ 23^2\ 25^3\ 27^2\ 29^2\ 31^2\ 33^2\ 35\ 37^2\ 39\ 41\ 43\ 45\ 49$
7	4 6 10
11	$4\ 6\ 8\ 10^2\ 12\ 14\ 16\ 18\ 22$
15	$4\ 6\ 8\ 10^2\ 12^2\ 14^2\ 16^2\ 18^2\ 20\ \ 22^2\ 24\ \ 26\ \ 28\ \ 30\ \ \ 34$
19	$4\ 6\ 8\ 10^2\ 12^2\ 14^2\ 16^3\ 18^3\ 20^2\ 22^3\ 24^2\ 26^2\ 28^2\ 30^2\ 32\ 34^2\ 36\ 38\ 40\ 42\ 46$
9	4 6 8 10 12 16
13	$4\ 6\ 8\ 10^2\ 12^2\ 14\ 16^2\ 18\ 20\ 22\ 24\ 28$
17	$4\ 6\ 8\ 10^2\ 12^2\ 14^2\ 16^3\ 18^2\ 20^2\ 22^2\ 24^2\ 26\ \ 28^2\ 30\ \ 32\ \ 34\ \ 36\ \ \ 40$
21	4 6 8 10 ² 12 ² 14 ² 16 ³ 18 ³ 20 ³ 22 ³ 24 ³ 26 ² 28 ³ 30 ² 32 ² 34 ² 36 ² 38 40 ² 42 44 46 48 52

- Some regularities can be noticed but why? Can we predict Jordan spectrum for any L, M, K?

Understanding the Jordan spectrum

The first approach : Algebraic Bethe ansatz

Algebraic Bethe ansatz with finite q_i 's

$$\begin{split} \Lambda(u) &= \frac{(-1)^{M} q_{2}^{K}}{q_{3}^{M-K}} (u+1)^{L} \prod_{n=1}^{M} \frac{u_{n} - u + 1}{u - u_{n}} + \frac{q_{1}^{M-K}}{q_{2}^{L-M}} u^{L} \prod_{j=1}^{K} \frac{u - v_{j} + 1}{u - v_{j}} \\ &+ (-1)^{K} \frac{q_{3}^{L-M}}{q_{1}^{K}} u^{L} \prod_{n=1}^{M} \frac{u - u_{n} + 1}{u - u_{n}} \prod_{j=1}^{K} \frac{v_{j} - u + 1}{u - v_{j}} \\ &\left(\frac{u_{m} + 1}{u_{m}}\right)^{L} = \frac{q_{3}^{L}}{(q_{1}q_{2}q_{3})^{K}} \prod_{n=1}^{M} \frac{u_{m} - u_{n} + 1}{u_{m} - u_{n} - 1} \prod_{j=1}^{K} \frac{u_{m} - v_{j} - 1}{u_{m} - v_{j}} \\ &1 = \frac{(q_{2}q_{3})^{L}}{(q_{1}q_{2}q_{3})^{M}} \prod_{n=1}^{M} \frac{v_{k} - u_{n} + 1}{v_{k} - u_{n}} \prod_{j=1}^{K} \frac{v_{k} - v_{j} - 1}{v_{k} - v_{j} + 1} \end{split}$$
Bethe vectors

 $|\psi\rangle = \mathbf{M}_{13}(v_1)\cdots\mathbf{M}_{13}(v_K)\mathbf{M}_{12}(u_1)\cdots\mathbf{M}_{12}(u_M)|0\rangle$

Take a strong twist limit

$$q_k \equiv \frac{\xi_k}{\varepsilon}, \quad u \to \varepsilon \overline{u}, \quad \text{with} \quad \varepsilon \to 0$$

BAE

$$\begin{pmatrix} \frac{u_m+1}{u_m} \end{pmatrix}^L = \frac{\varepsilon^{3K-L} \cdot \xi_3^L}{(\xi_1 \xi_2 \xi_3)^K} \prod_{n=1 \atop n \neq m}^M \frac{u_m - u_n + 1}{u_m - u_n - 1} \prod_{j=1}^K \frac{u_m - v_j - 1}{u_m - v_j}$$

$$1 = \frac{\varepsilon^{3M-2L} \cdot (\xi_2 \xi_3)^L}{(\xi_1 \xi_2 \xi_3)^M} \prod_{n=1}^M \frac{v_k - u_n + 1}{v_k - u_n} \prod_{j=1 \atop j \neq k}^K \frac{v_k - v_j - 1}{v_k - v_j + 1}$$

With exact solutions

$$u_{n} = 0 + \varepsilon^{\alpha} \hat{u}_{n}, \quad n = 1, \cdots, M_{1}$$

$$u_{M_{1}+k} = -1 + \varepsilon^{\beta} \hat{w}_{k}, \quad k = 1, \cdots, K$$

$$v_{k} = -2 + \varepsilon^{\beta} \hat{w}_{k} + \varepsilon^{\gamma} \hat{v}_{k}, \quad k = 1, \cdots, K$$

$$(0 + \sqrt{\alpha}) + \varepsilon^{\gamma} \varepsilon^{\gamma} \varepsilon^{\gamma} \varepsilon^{\gamma}$$

$$(13/35)$$

$$lpha = rac{L-M-K}{L-M+K}, \quad eta = rac{L-3(M-K)}{L-M+K}, \quad \gamma = 2L-3M-eta(K-1)$$

$$\hat{w}_{k} = -\frac{\left(\xi_{1}\xi_{3}\right)^{\frac{M_{1}}{L-M_{1}}}}{\xi_{2}} \omega_{L-M_{1}}^{n_{k}+\frac{K-1}{2}}, \quad n_{k} = \{1, \cdots, L-M_{1}\}, \quad \omega_{n} \equiv e^{\frac{2\pi i}{n}}$$
$$\hat{u}_{n} = \left(\frac{\left(\xi_{1}\xi_{2}\xi_{3}\right)^{K}}{\xi_{3}^{L}}(-1)^{M-1}\prod_{k=1}^{K}\hat{w}_{k}\right)^{\frac{1}{L}} \omega_{L}^{i_{n}}, \quad i_{n} = \{1, \cdots, L\}$$

- This result does not apply for $3M_1 \ge L > 2M K$ since $\alpha, \beta > 0$.
- Eigenvalues of Transfer matrix: the L-th roots of unity

$$\Lambda(u) = \exp \frac{2\pi i}{L} \left[\sum_{k=1}^{K} n_k - \sum_{m=1}^{M_1} i_m + \frac{1}{2} M_1 (M_1 - 1) + \frac{1}{2} K (K - 1) \right]$$

for **Cyclic states** : $[\cdots] = 0 \mod L$ Independent of ξ 's : already shows a glimpse of universality $z = -\infty$

14/35

George Pólya (Budapest, 1887 - Palo Alto, 1985) "I am not good enough for physics and too good for philosophy; mathematics is in between."

Pólya's Formula I

Number of inequivalent necklaces of *L* beads with colors $\mathcal{A} = \{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$

Physicists' derivation following [Spradlin, Volovich '05] Let $\hat{\ell}, \hat{m}, \hat{k}$ count # of beads with colors $\mathbf{1}, \mathbf{2}, \mathbf{3}$ in $|\mathcal{A}_1 \cdots \mathcal{A}_L\rangle$, resp. The generating function defined by

$$Z(x, y, z) = \sum_{L=1}^{\infty} \operatorname{Tr}_{\mathcal{A}^{\otimes L}} \left[\mathsf{P}_{\operatorname{cyc}} x^{\hat{\ell}} y^{\hat{m}} z^{\hat{k}} \right], \qquad \mathsf{P}_{\operatorname{cyc}} = \frac{1}{L} \sum_{j=1}^{L} \mathsf{U}^{j}$$

will count # of cyclic states (necklaces)

- If j = 1, $\langle \mathcal{A}_1 \cdots \mathcal{A}_L | \mathcal{A}_2 \cdots \mathcal{A}_1 \rangle$ is non-zero only if $\mathcal{A}_1 = \cdots = \mathcal{A}_L$
- If the greatest common divisor (j, L) = 2, all A_{even} (and independently A_{odd}) should have the same colors
- Similarly for $(j, L) = 3, 4, \cdots, L$, the counting function becomes

$$Z(x,y,z) = \sum_{L=1}^{\infty} \frac{1}{L} \sum_{j=1}^{L} \left(\operatorname{Tr}_{\mathcal{A}} \left[x^{L/(j,L)\hat{\ell}} y^{L/(j,L)\hat{m}} z^{L/(j,L)\hat{k}} \right] \right)^{(j,L)}$$

16/35

- # of j's with (j, L) = p is $\phi(L/p)$ where Euler's totient function $\phi(n)$ counts # of coprimes to n which is less than n G. Pólya's formula (L = np)

$$Z(x, y, z) = \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} \frac{\phi(n)}{np} \zeta(x^n, y^n, z^n)^p = -\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1 - \zeta(x^n, y^n, z^n)\right]$$

where

$$\zeta(x, y, z) = \operatorname{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}}y^{\hat{m}}z^{\hat{k}}\right] = x + y + z$$

Expanding in x, y, z,

$$Z(x,y,z) = \sum_{L=1}^{\infty} \sum_{M=1}^{L} \sum_{K=1}^{M} d(L,M,K) \cdot x^{L-M} y^{M-K} z^{K}$$

d(L, M, K) counts # of cyclic states in (L, M, K) sector

L	M	K	naive counting	Pólya formula	Bethe ansatz	
14	6	2	6435/2	3225	3225	
16	6	2	15015/2	7518	7518	
18	6	2	15470	15484	15484	
20	6	2	29070	29088	29088	
20	8	2	176358	176400	176400	
20	10	4	1939938	1940064	1940064	
21	9	3	1175720	1175730	1175730	
22	6	2	101745/2	50895	50895	
22	8	2	406980	407040	407040	
22	10	4	6172530	6172740	6172740	
24	6	2	168245/2	84150	84150	
24	8	2	1716099/2	858132	858132	
24	9	3	4576264	4576278	4576278	
24	10	4	17160990	17161320	17161320	

naive counting : $\frac{1}{L} \frac{L!}{(L-M)!(M-K)!K!}$

However, Bethe ansatz fails for Jordan spectrum

All Bethe states collapse into only one state called "Locked state"

$$\begin{aligned} |\psi\rangle &= \mathcal{M}_{13}(v_1)\cdots\mathcal{M}_{13}(v_K)\mathcal{M}_{12}(u_M)\mathcal{M}_{12}(u_1)\cdots\mathcal{M}_{12}(u_M)|0\rangle \\ &\to \sum_{n=1}^{L} |\cdots 1 \ 1 \ \stackrel{[n]}{\stackrel{\downarrow}{2}} 2 \cdots 2 \ \mathbf{3} \cdots \mathbf{3} \ 1 \ 1 \cdots \rangle \qquad \text{as} \quad \varepsilon \to 0 \end{aligned}$$

The same conclusion has been obtained using coordinate BA In addition, generalized eigenvectors associated with the Locked state have been obtained

```
Nieto García, Wyss '21; Nieto García '22]
```

But Integrability can not provide **other true eigenvectors** which exist for each Jordan block

Understanding the Jordan spectrum

The second approach : Combinatorics and Linear Algebra

Hyper-eclectic model with K = 1Consider a generic cyclic state

$$|\underbrace{1\cdots 1}_{n_0} \underbrace{2}_{n_1} \underbrace{1\cdots 1}_{n_1} \underbrace{2}_{n_2} \underbrace{1\cdots 1}_{n_{M_1}} \underbrace{3}\rangle$$

Define a level S as sum of # of 1 on RHS of each 2

$$\Rightarrow \quad \mathsf{S} = (n_1 + \cdots + n_{M_1}) + (n_2 + \cdots + n_{M_1}) + \cdots + n_{M_1}$$

Hamiltonian acting on this state

$$\mathsf{H}_3 = \sum_{n=1}^{L} \mathbb{P}_{21}^{n,n+1}$$

moves each 2 to Right by one step, hence

$$H_3: S \rightarrow S-1$$

21/35

$$\begin{split} S_{\max} &= L_1 M_1 \text{ is given by "anti-Locked" state } |2 \cdots 21 \cdots 13\rangle \\ S_{\min} &= 0 \text{ is given by the Locked state } |1 \cdots 12 \cdots 23\rangle \\ A \text{ Jordan chain with length } L_1 M_1 + 1 \text{ is formed by acting } \mathbf{H}_3 \\ &|2 \cdots 21 \cdots 13\rangle \rightarrow |2 \cdots 2121 \cdots 13\rangle \rightarrow \cdots \rightarrow |1 \cdots 12 \cdots 23\rangle \rightarrow 0 \\ (\text{Ex}) M &= 5, K = 1 \end{split}$$

L	Sizes of Jordan Blocks
8	1 5 7 9 13
9	$1 \ 5^2 \ 9^2 \ 11 \ 13 \ 17$
10	$1 5^2 \ 7 9^2 \ 11 13^2 \ 15 \overline{17} \qquad 21$
11	$1^2 5^2 7 9^3 11 13^3 15 17^2 19 21 25$
12	$1 5^3 \ 7 9^3 \ 11^2 \ 13^3 \ 15^2 \ 17^3 \ 19 21^2 \ 23 25 \qquad 29$
13	$1^2 5^3 7 9^4 11^2 13^4 15^2 17^4 19^2 21^3 23 25^2 27 29$ 33
14	$1^2 5^3 7^2 9^4 11^2 13^5 15^3 17^4 19^3 21^4 23^2 25^3 27 29^2 31 33$ 37
15	$1^{2} 5^{4} 7 9^{5} 11^{3} 13^{5} 15^{3} 17^{6} 19^{3} 21^{5} 23^{3} 25^{4} 27^{2} 29^{3} 31 33^{2} 35 37$ 41
16	$1^{2} 5^{4} 7^{2} 9^{5} 11^{3} 13^{6} 15^{4} 17^{6} 19^{4} 21^{6} 23^{4} 25^{5} 27^{3} 29^{4} 31^{2} 33^{3} 35 37^{2} 39 41$ 45
17	$1^{3} 5^{4} 7^{2} 9^{6} 11^{3} 13^{7} 15^{4} 17^{7} 19^{5} 21^{7} 23^{4} 25^{7} 27^{4} 29^{5} 31^{3} 33^{4} 35^{2} 37^{3} 39 41^{2} 43 45 49$
18	$1^2 \ 5^5 \ 7^2 \ 9^6 \ 11^4 \ 13^7 \ 15^5 \ 17^8 \ 19^5 \ 21^8 \ 23^6 25^7 \ 27^5 \ 29^7 \ 31^4 \ 33^5 \ 35^3 \ 37^4 \ 39^2 \ 41^3 \ 43 \ 45^2 \ 47 \ 49 \ 53$

(Ex) (7, 3, 1) sector

The first Jordan chain by H_3 is from anti-Locked to Locked state

 $|\textbf{2211113}\rangle^{\text{S}=8} \rightarrow |\textbf{2121113}\rangle^{\text{7}} \rightarrow |\textbf{1221113}\rangle^{\text{6}} + |\textbf{2112113}\rangle^{\text{6}} \rightarrow$

 $2|1212113\rangle^{5} + |2111213\rangle^{5} \rightarrow 3|1211213\rangle^{4} + 2|1122113\rangle^{4} + |2111123\rangle^{4}$

 $\rightarrow 5|1121213\rangle^3 + 4|1211123\rangle^3 \rightarrow 9|1121123\rangle^2 + 5|1112213\rangle^2 \rightarrow$

 $14|1112123\rangle^1 \rightarrow 14|1111223\rangle^0 \rightarrow 0$

The second Jordan chain can exist if it starts at S = 6

 $|a|1221113\rangle^6 + b|2112113\rangle^6 \rightarrow (a+b)|1212113\rangle^5 + b|2111213\rangle^5 \rightarrow b|2111213\rangle^5$

 $\cdots \rightarrow (3a+6b)|1121123\rangle^2 + (2a+3b)|1112213\rangle^2 \rightarrow (5a+9b)|1112123\rangle^1$

With 5a + 9b = 0, we can find the second true eigenvector and JB of size 5

$$-9|1221113\rangle^{6} + 5|2112113\rangle^{6} \rightarrow \cdots \rightarrow |1121123\rangle^{2} - |1112213\rangle^{2}$$

The third Jordan chain can start at S = 4 since there are three vectors

$$a'|1211213\rangle^4 + b'|1122113\rangle^4 + c'|2111123\rangle^4 \rightarrow$$

 $(a'+b')|1121213\rangle^3 + (a'+c')|1211123\rangle^3$

With b' = c' = -a', we can find the third true eigenvector and JB of size 1 $|1211213\rangle^4 - |1122113\rangle^4 - |2111123\rangle^4$

- If top vector in a Jordan chain starts at level S, the bottom vector

(true eigenvector) occurs at level $S_{\rm max}-S\equiv\overline{S}$

- Length of the Jordan chain : $2\mathsf{S}-\mathsf{S}_{\max}+1$
- The Jordan spectrum : $\mathsf{JNF}(7,3,1) = 1\ 5\ 9$

Jordan spectrum of K = 1

- (Def) dim_S be the dimension of a vector space with level S i.e. # of linearly independent states at the level S

- New Jordan chains are formed at level S if $dim_S > dim_{S+1}$ for $S \geq \frac{S_{\max}}{2}$

- In principle, **unexpected shortening** may occur somewhere in the chain and a new chain may start again. Although we have no mathematical proof, we checked that this never occurs for many explicit cases

- Multiplicity of Jordan blocks : $\mbox{dim}_S - \mbox{dim}_{S+1}$ for $S \geq \frac{S_{\max}}{2}$

(Ex) (7,3,1) sector										
	S	8	7	6	5	4	3	2	1	0
	dim _S	1	1	2	2	3	2	2	1	1
	$\textbf{dim}_{S} - \textbf{dim}_{S+1}$	1	0	1	0	1	-	-	-	-

- Jordan spectrum is encoded in dim_S!

Gaussian binomial coefficients

$$S(|1\cdots 12\overbrace{1\cdots 1}^{n_1} 2\overbrace{1\cdots 1}^{n_2} \cdots 2\overbrace{1\cdots 1}^{n_{M_1}} 3)) = (n_1 + \cdots + n_{M_1}) + (n_2 + \cdots + n_{M_1}) + \cdots + n_{M_1}$$

- $\dim_{\mathsf{S}} = \#$ of partitions of S into at most M_1 parts, each $\leq L_1$

- This restricted partition is generated by Gaussian binomial coefficients

$$\begin{bmatrix} L_1 + M_1 \\ M_1 \end{bmatrix}_q = \prod_{k=1}^{M-1} \frac{[L-k]_q}{[k]_q} = \sum_{S=0}^{L_1 M_1} \dim_S q^{S-L_1 M_1/2}$$

in terms of *q*-number defined by

$$[n]_q = \frac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}} = q^{(n-1)/2} + \cdots q^{-(n-1)/2}$$

- One can show : $\dim_{S} = \dim_{\overline{S}}$, $(\overline{S} \equiv S_{\max} \neg S) \in \mathbb{R}$

- (Def) Generating function as trace over all states in (L, M, 1) sector

$$Z_{L,M}(q) = \operatorname{Tr}\left[q^{\mathsf{S}-\mathsf{S}_{\max}/2}
ight]$$

- Contribution of a Jordan chain from S to \overline{S} to $Z_{L,M}$

$$q^{\mathsf{S}-\mathsf{S}_{\max}/2} + \dots + q^{-\mathsf{S}+\mathsf{S}_{\max}/2} = [2\mathsf{S}+1-\mathsf{S}_{\max}]_q = [ext{Length of JB}]_q$$

- Generating function is the sum of all possible Jordan chains

$$Z_{L,M}(q) = \prod_{k=1}^{M-1} \frac{[L-k]_q}{[k]_q} = \sum_{j=1}^b n_j [N_j]_q \quad \Rightarrow \quad \text{JNF} = N_1^{n_1} \cdots N_b^{n_b}$$

Jordan spectrum of K > 1

- (Def) Partition function

$$\mathbf{bin}(x, y, z, q) = \mathrm{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}}y^{\hat{m}}z^{1}q^{\mathsf{S}-\hat{\ell}\hat{m}/2}\right]$$

where \mathcal{A} is **infinite "colors"**, a set of all cyclic states with single **3**

 $\mathcal{A} = \{\mathbf{3}, \mathbf{13}, \mathbf{23}, \mathbf{113}, \mathbf{123}, \mathbf{213}, \mathbf{223}, \mathbf{1113}, \mathbf{1123}, \mathbf{1213}, \mathbf{2113}, \cdots \}$

- which can be easily computed to be

$$\mathbf{bin}(x,y,z,q) = \sum_{\ell=0}^{\infty} \sum_{m=0}^{\infty} Z_{\ell+m,m}(q) x^{\ell} y^m z$$

(cf) Pólya I formula with colors $\mathcal{A} = \{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$

$$\zeta(x, y, z) = \operatorname{Tr}_{\mathcal{A}}\left[x^{\hat{\ell}}y^{\hat{m}}z^{\hat{k}}\right] = x + y + z$$

28 / 35

Pólya's Formula II

Count necklaces with K beads of infinite colors $\mathcal{A} = \{3, 13, 23, \dots\}$ The generating function defined by

$$Z(x, y, z, q) = \sum_{K=1}^{\infty} \operatorname{Tr}_{\mathcal{A}^{\otimes K}} \left[\mathbf{P}_{\operatorname{cyc}} x^{\hat{\ell}} y^{\hat{m}} z^{\hat{k}} q^{\mathsf{S} - \hat{\ell} \cdot \hat{m}/2} \right], \qquad \mathbf{P}_{\operatorname{cyc}} = \frac{1}{K} \sum_{j=1}^{K} \mathbf{U}^{j}$$

will count # of cyclic states (necklaces) The rest steps are identical as before and we get

$$Z(x, y, z, q) = -\sum_{n=1}^{\infty} \frac{\phi(n)}{n} \ln \left[1 - \mathbf{bin}(x^n, y^n, z^n, q^n)\right]$$

Expanding, we obtain generating function $Z_{L,M,K}(q)$

$$Z(x, y, z, q) = \sum_{L=1}^{\infty} \sum_{M=1}^{L} \sum_{K=1}^{M} Z_{L,M,K}(q) \cdot x^{L-M} y^{M-K} z^{K}$$

which can give the JNF spectrum

$$Z_{L,M,K}(q) = \sum_{j=1}^{b} n_j [N_j]_q \quad \Rightarrow \quad \text{JNF} = N_1^{n_1} \cdots N_b^{n_b}$$

Examples: Using Mathematica, it is easy to read off

$$\begin{aligned} &-(8,4,2)\\ &Z_{8,4,2}(q) = 4[1]_q + 3[3]_q + 4[5]_q + [7]_q + [9]_q \quad \Rightarrow \quad \text{JNF} = 1^4 \ 3^3 \ 5^4 \ 7 \ 9\\ &-(9,6,3)\\ &Z_{9,6,3}(q) = 10[1]_q + 8[2]_q + 10[3]_q + 14[4]_q + 4[5]_q + 3[6]_q + 4[7]_q + [10]_q\\ &\Rightarrow \quad \text{JNF} = 1^{10} \ 2^8 \ 3^{10} \ 4^{14} \ 5^4 \ 6^3 \ 7^4 \ 10 \end{aligned}$$

Universality

We claim that the eclectic and hyper-eclectic models have the same Jordan spectrum.

Hamiltonian of the eclectic model

$$\mathbf{H} = \mathbf{H}_{3} + \mathbf{H}_{1} + \mathbf{H}_{2}, \qquad \mathbf{H}_{1} = \xi_{1} \sum_{n=1}^{L} \mathbb{P}_{32}^{n,n+1}, \quad \mathbf{H}_{2} = \xi_{2} \sum_{n=1}^{L} \mathbb{P}_{13}^{n,n+1}$$

One can check that

$$\mathbf{H_3}:\ \mathsf{S}\to\mathsf{S}-\mathsf{1},\quad \mathbf{H_2}:\ \mathsf{S}\to\mathsf{S}-\mathit{M_1},\quad \mathbf{H_1}:\ \mathsf{S}\to\mathsf{S}-\mathit{L_1}$$

It is obvious that the eigenvector of the hyper-eclectic model at the level $\overline{S} = S_{max} - S$ becomes that of the eclectic model if $M_1 > \overline{S}$

This means for cases with relatively large number of **2**'s, two models share the same Jordan blocks with relatively large sizes

If not, one can modify the top vector of the hyper-eclectic model which becomes an eigenvector by acting ${\bf H}$

(Ex) (7,3,1) again: We showed above that

$$H_{3}^{5}(-9|1221113\rangle^{6}+5|2112113\rangle^{6})=0$$

This can be extended to

 $\mathbf{H}^{5}(-9|1221113\rangle^{6} + 5|2112113\rangle^{6} + \gamma|1212113\rangle^{5}) = 0 \quad \text{if } \gamma = 3\xi_{2}$

Conjecture: One can construct top vectors of the eclectic model from those of the hyper-eclectic model by adding vectors with lower level S

But we have no rigorous mathematical proof yet in general context.

Summary and Future directions

- We have investigated the (hyper)-eclectic models, simple integrable models appeared in the context of strongly twisted $\mathcal{N}=4$ SYM

- We showed the BAE can be consistent with Pólya formula which is a non-trivial check for the BAE and its solutions

- The integrability fails to explain Jordan spectrum

- We used mathematics (combinatorics and linear algebra) to obtain complete Jordan spectrum

- Applications : Logarithmic CFTs, Correlation functions of Fishnet theory, etc.

- Complete mathematical proof of no unexpected shortening and universality assumptions

- Applying our Pólya formula to other non-Hermitian spin chain model with integrability

-Systematic construction of eigenvectors

```
(Ex) (10, 5, 1)
Jordan spectrum : 1 5<sup>2</sup> 7 9<sup>2</sup> 11 13<sup>2</sup> 15 17 21
```

Complete eigenvectors

```
{7 |1122122113> - 10 |1122211213> - 7 |1211222113> + 3 |1212121213> + 10 |1212211123> + |1221112213> -
9 |1221121123> + 4 |2111221213> - 4 |2112112213> - 4 |211212123> + 8 |212111223> - 8 |221111223>,
2 |1112222113> - 2 |1121221213> + 3 |112212113> + 2 |211122123> - 2 |211211223>,
3 |1212212123> + 5 |122111223> - 2 |21111223> + 2 |211122123> - 2 |211211223>,
3 |111221213> - 3 |11212213> - 3 |11212213> + 5 |112211223> + 3 |12112213> + 1|21121213> -
5 |121211223> - 4 |211112213> - 3 |1122111223>, 2 |11221123> - 3 |112211123> - 2 |21112123> +
3 |12112213> - 4 |211112213> - 3 |1122111223>, 2 |11221123> - 3 |112121123> + 2 |21112213> - 2 |12111223>,
111122123> - 4 |21112213> - 3 |1122111223>, 2 |112211223> - 2 |211121223>,
111122123> - |112112213> - 3 |1122111223>, 2 |21112213> - 2 |12111223>,
111122213> - |11212213> - |11212123> + 3 |122111223>,
111122123> - |11212123> + 2 |11211223>,
111122123> - |11212123> + 2 |112111223>,
111122123> - |11212123> + 2 |112111223>,
111122123> - |11212123> + 2 |11211223>,
111122123> - |11212123> + 2 |112111223>,
111122123> - |11212123> + 2 |112111223>,
111122123> - |11212123> + 2 |112111223>,
111122123> - |11212123> + 2 |11211223>,
111122123> - |11212123> + 2 |11211223>,
111122123> - |11212123> + 2 |11211223>,
11112223>,
111122123> - |11212123> + 11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 2 |11211223>,
11112223> - |11212123> + 11211223>,
11112223> - |11212123> + 2 |12111223>,
11112223> - |11212123> + 2 |12111223>,
11112223> - |11212123> + 2 |12111223>,
11112223> - |11212123> + 2 |12111223>,
11112223> - |11212123> + 2 |12111223>,
111122123> - |11212123> + 2 |12111223>,
111122123> - |112121223>,
111122123> - |11212123> + 2 |12111223>,
111122123> - |112121223>,
111122123> - |112121223> + 2 |12111223>,
111122123> - |112121223>,
111122123> - |112121223>,
111122123> - |112121223>,
111122123> - |1121
```

Thank you for attention!