
Boundary scattering in the φ4 model

Patrick Dorey†, Aliaksei Halavanau?, James Mercer†, Tomasz Romanczukiewicz‡ and Yasha Shnir?§¶
†Department of Mathematical Sciences, Durham University, UK

?Belarusian State University, Minsk, Belarus
‡Inst. of Physics, Jagiellonian University, Krakow, Poland

§BLTP, JINR, Dubna, Russia
¶Inst. of Physics, Oldenburg University, Germany

(Dated: August 11, 2015)

We study boundary scattering in the φ4 model on a half-line with a one-parameter family of
Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends
previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restora-
tion of a missing scattering window, and the creation of a kink or oscillon through the collision-
induced decay of a metastable boundary state.
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Introduction. Systems with boundaries, defects and
impurities have been intensively studied in statistical
physics and field theory, both at the classical and the
quantum levels. Often the key physics of the model can
be captured, possibly after dimensional reduction, by a
simple 1+1 dimensional field theory on a half line. Ex-
amples include the Kondo problem [1], fluxon propaga-
tion in long Josephson junctions [2], the XXZ model with
boundary magnetic field [3], an impurity in an interacting
electron gas [4], the sine-Gordon [5] and Toda [6] models,
monopole catalysis [7], the Luttinger liquid [8], and a toy
model motivated by M-theory [9].

Especially since the work of Ghoshal and Zamolod-
chikov [5], there has been great interest in boundary con-
ditions compatible with bulk integrability, and many such
models turn out to be of direct physical interest. How-
ever less attention has been paid to the equally if not
more physically-relevant cases of non-integrable bound-
ary systems, even at the classical level. This is perhaps
a shame, as it is now known that non-integrable classi-
cal field theories, even in 1+1 dimensions, can exhibit
remarkably rich patterns of behaviour not seen in their
integrable counterparts [10–14].

In this Letter we examine the φ4 theory in 1+1 dimen-
sions, restricted to a half line by a simple Neumann-type
‘magnetic field’ boundary condition. The φ4 theory on a
full line is similar to the sine-Gordon model in that both
support topological kinks and antikinks; the φ4 theory
also has an intriguing and still not fully-understood coun-
terpart of the sine-Gordon breather, the oscillon [15]. We
chose the magnetic field boundary condition in part be-
cause of its simplicity, and in part because the scattering
of kinks against such a boundary provides a natural de-
formation of the full-line scattering problems which are
already known to exhibit intricate patterns of resonant
scattering [10–13]. In certain regimes our results do in-
deed resemble the pattern of scattering windows observed
in kink-antikink collisions on the full line; in others we
find novel phenomena including a new type of ‘sharp-
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Figure 1. Static solutions for H = 1/2.

edged’ scattering window. Even though the theory is not
integrable, it turns out to be possible to give an accurate
analytical description of some aspects of this behaviour.

The model. We consider a rescaled φ4 theory with
vacua φv ∈ {−1,+1} on the left half-line −∞ < x < 0.
The bulk energy and Lagrangian densities are E = T +V
and L = T − V respectively, where

T = 1
2φ

2
t and V = 1

2φ
2
x + 1

2 (φ2 − 1)2 . (1)

The static full-line kink and antikink, φK(x) = tanh(x−
x0) and φK̄(x) = −φK(x), have rest mass M = 4/3 and
interpolate between the two vacua. Including a bound-
ary energy −Hφ0, where φ0 = φ(0, t) and H can be inter-
preted as a boundary magnetic field, yields the Neumann-
type boundary condition φx(0, t) = H at x = 0 .

For 0 < H < 1 there are four static solutions to the
equations of motion, shown in Fig. 1. Two of them,
φ1(x) = tanh(x − X0) and φ2(x) = tanh(x + X0)
with X0 = cosh−1(1/

√
|H|), are restrictions of regu-

lar full-line kinks to the half-line, while the other two,
φ3(x) = − coth(x − X1) and φ4(x) = − coth(x + X1)
with X1 = sinh−1(1/

√
|H|) are irregular on the full

line. On the half line, φ3 is non-singular and corre-
sponds to the absolute minimum of the energy, while φ1

is metastable, and φ2 is the unstable saddle-point be-
tween φ3 and φ1. The energies can be found by rewriting
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E[φ] =
∫ 0

−∞ V dx−Hφ0 in Bogomolnyi form as

E[φ] = 1
2

0∫
−∞

(
φx ± (φ2−1)

)2
dx∓

[
1
3φ

3−φ
]0
−∞−Hφ0 . (2)

Since φ1 and φ2 satisfy φx = 1 − φ2 we have φ1(0) =
−
√

1−H, φ2(0) =
√

1−H ; while (φ3)x = φ2
3 − 1 and so

φ3(0) =
√

1+H. Taking the upper and lower signs in (2)
as appropriate,

E[φ1] = 2
3 −

2
3 (1−H)3/2 , E[φ2] = 2

3 + 2
3 (1−H)3/2 ,

E[φ3] = 2
3 −

2
3 (1+H)3/2 . (3)

As H increases through 1, φ1 merges with φ2 and
disappears, leaving φ3 as the only static solution for
H > 1. For H < 0 the story is the same, with φ and
H negated throughout, so the physically-relevant solu-
tions are φ̃i(x) = −φi(x), i = 1 . . . 3.

Numerical results. We took initial conditions cor-
responding to an antikink at x0 = −10 travelling to-
wards the boundary with velocity vi > 0. (We found
the setup with an incident antikink easier to visualise,
but our results apply equally to kink-boundary colli-
sions on negating φ and H.) Thus the initial pro-
file was φ1(x) − tanh(γ(x − x0)) + 1 for H > 0 and
φ̃3(x) − tanh(γ(x − x0)) + 1 for H < 0, where γ =
1/
√

1− v2
i . Our real interest was in the problem with the

initial antikink infinitely far from the boundary; the rapid
decay of the antikink-boundary force (4), calculated be-
low, meant that error in taking x0 finite was small.

To solve the system numerically, we restricted it to an
interval of length L, with the Neumann boundary con-
dition imposed at x = 0 and a Dirichlet condition at
x = −L. (Since we took run times such that radiation
did not have time to reflect from the extra boundary and
return, the boundary condition at x = −L was anyway
irrelevant.) We used a 4th order finite-difference method
on a grid of N = 1024 nodes with L = 100, so the spatial
step was δx ≈ 0.1, and a 6th-order symplectic integrator
for the time stepping function, with time step δt = 0.04.
Selected runs were repeated with other values of x0, L,
N and δt to check the stability of our results.

Our simulations revealed a rich picture, aspects of
which are summarised in Figs. 2, 3. For all (H, vi) pairs
with H < Hc ≈ 0.6, the antikink either reflects off the
boundary with some velocity vf , or becomes stuck to it –
corresponding to vf = 0 – to form a ‘boundary oscillon’
which then decays very slowly into radiation. At H = 0
(Fig. 2c) the plot of |vf | as a function of vi reproduces the
well-known structure of resonant scattering windows in
KK̄ collisions on a full line [10–12]. For negative values
of H (Figs. 2a and b) new features emerge. For vi small,
the antikink is reflected elastically from the boundary
with very little radiation. As vi increases above a critical
value vcr, the antikink is trapped by the boundary, leav-
ing only radiation in the final state. Increasing vi further,
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Figure 2. Final antikink velocities as functions of initial veloc-
ities. The dashed line indicates the result for a purely elastic
collision. In the fifth plot, a kink can also be produced: its
velocity is shown in red.
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Figure 3. A ‘phase diagram’ of antikink-boundary collisions.
The plot shows the value of the field at x = 0 a time tf =
|x0|/vi + 100 after the start of the simulation, as function of
the boundary magnetic field H and the initial velocity vi.

scattering windows begin to open, until vi exceeds an up-
per critical value and the antikink again always escapes.
If the antikink escapes its speed |vf | is always larger than
some minimal value very slightly lower than vcr, so (in
contrast to the full-line situation) vf is a discontinuous
function of vi, giving the windows the sharp edges men-
tioned in the introduction. For small positive values of H
(Fig. 2d), vf is instead a continuous function of vi, with
the sequence of windows seen at H = 0 shifting towards
lower values of vi while preserving its general structure.
Finally, for H > Hc (Fig. 2e) other new phenomena arise
which have no counterparts in the full-line theory; these
will be discussed further below.
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Analytical considerations. To evaluate the static force
between a single antikink and the boundary we place the
antikink at x = x0 < 0 and add a possibly-singular ‘im-
age’ kink at x1 > 0 in such a way that the combined
configuration satisfies the boundary condition at x = 0.
From the standard full-line result, the force on the an-
tikink is equal to 32e−2(x1−x0), or minus this if the image
kink is singular. For |H| � 1 and |x0| � 1 we find
e−2x1 = 1

4H + e2x0 , so

F = 32
(

1
4H + e2x0

)
e2x0 . (4)

For H < 0 the force is repulsive far from the boundary,
and attractive nearer in. When x0 = − 1

2 log(− 1
4H), x1 =

∞ and the force vanishes, the antikink-kink configuration
reducing to the unstable static solution φ̃2.

Now consider, also for H < 0, an antikink moving
towards the boundary. If its velocity vi is small, then
it won’t have sufficient energy to overcome the initially-
repulsive force, and it will be reflected without ever com-
ing close to x = 0, and without significantly exciting any
other modes; this is illustrated in Fig. 4a. Increasing vi,
at some critical value vcr the energy will be just enough
reach the top of the potential barrier and create the static
saddle-point configuration φ̃2, as shown in Fig. 4b. The
value of vcr can be deduced on energetic grounds: the
initial energy is 4

3 (1 − v2
cr)−1/2 + E[φ1], while the final

energy is E[φ̃2] = 2
3 + 2

3 (1+H)3/2. Equating the two,

vcr(H) =

√
1− 4

(
(1+H)3/2 + (1−H)3/2

)−2
. (5)

If vi is just larger than vcr, the antikink can overcome
the potential barrier and approach the boundary; energy
is then lost to other modes and so it is unable to return,
and is trapped at the boundary. Thus vcr(H) marks
the upper limit of the windows of almost-perfectly-elastic
scattering seen in Figs. 2a and 2b, and the lower edge
of the ‘fractal tongue’ occupying the left half of Fig. 3.
The curve vi = vcr(H) is included in Fig. 3; it matches
our numerical results remarkably well. Similar arguments
show that, within this particle-like approximation, vcr
is the smallest possible speed for any escaping antikink,
explaining the sharp (discontinuous) edges of all windows
when H < 0.

Next we consider the perturbative sector of the model.
The full-line theory has a continuum of small linear per-
turbations about each vacuum with mass m = 2; in ad-
dition a static kink φ1(x) = tanh(x − X0) has a dis-
crete normalizable mode with frequency ω1 =

√
3, and a

continuum of above-threshold states η(x, t) = eiωtηk(x)
where ω2 = 4 + k2,

ηk(x) = e−ikX
(
−1− k2 + 3ik tanhX + 3 tanh2X

)
(6)

and X = x−X0 [17]. Considering φ1 instead as a static
half-line solution to the boundary theory with 0 < H < 1,
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Figure 4. Example collisions for H = −0.4 (left) and H =
0.9 (right). The plots illustrate various scenarios: (a) elastic
recoil at negative H and low impact velocity; (b) saddle point
production, the antikink finishing on the top of the barrier;
(c) single bounce; (d) single bounce with the excitation of
the boundary mode; (e) kink production via collision-induced
boundary decay; (f) production of a bulk oscillon.

linear perturbations must satisfy ∂xη(x) = 0 at x = 0.
Setting k = iκ this yields

κ3 − 3φ0κ
2 + (6φ2

0 − 4)κ− 6φ3
0 + 6φ0 = 0 (7)

where φ0 = φ1(0) = −
√

1−H and now ω2 = 4 − κ2.
For 0 < H < 1, −1 < φ0 < 0 and there is just one
positive solution κ to Eq. (7), which furthermore satisfies
κ < 2: this is a vibrational mode, localised near to the
boundary. For H < 0, φ0 < −1, and the continuation of
Eq. (7) governs the spectrum of fluctuations about φ̃3(x),
the H < 0 vacuum. There are no positive solutions in
this regime and hence no internal modes of the boundary
for H < 0. Finally, for 0 < φ0 < 1, the equation encodes
the linear perturbations of φ2, the saddle-point solution.
For these cases Eq. (7) has two positive solutions but one
is larger than 2: this is the unstable mode of φ2.

These results are confirmed by our simulations. Fig. 5
shows the Fourier transforms of φ(0, t) for 30 < t < 3030,
for antikink-boundary collisions with initial velocity vi =
0.5, and H = −0.1 and 0.3. The final velocity vf of
the reflected antikink is −0.382596 for H = −0.1 and
−0.454014 for H = 0.3, so in both cases translational
energy is lost to other modes during the collision.

For H = −0.1, the boundary does not have an inter-
nal mode, and only radiation with frequencies near to 2,
the mass threshold, remains near to the boundary. The
internal mode of the reflected antikink has frequency ω1,
but this mode cannot be observed at the boundary since
it is exponentially suppressed there. However nonlinear
couplings with other excitations create waves with fre-
quencies at above-threshold multiples of ω1 [18], which
can propagate to the boundary. Indeed, the upper plot
of Fig. 5 shows peaks at Ω1 = 2 and Ω2 = Ω(2ω1), where
Ω(ω) = γ(ω + k(ω)vf ) is the Doppler-shifted frequency
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Figure 5. Power spectra at the boundary after a collision with
vi = 0.5, for H = −0.1 (upper) and H = 0.3 (lower).

of radiation emitted from the moving kink measured on
the boundary. Higher harmonics at Ω3 = Ω(3ω1) and
Ω4 = Ω(4ω1) are also visible, along with combinations of
the internal mode of the antikink and the lowest contin-
uum mode such as Ω5 = Ω(2 +ω1) and Ω6 = 2 + Ω(2ω1).

Many of these modes are also present in the H = 0.3
spectrum shown in the lower plot of Fig. 5, albeit at
shifted locations because of the different final antikink
velocity. However the plot is dominated by the internal
boundary mode with frequency Ω10 = 1.888459. The
higher harmonics Ω11 = 2Ω10 and Ω12 = 3Ω10 are also
visible, while interactions between radiation from the
outgoing antikink and the boundary mode lead to peaks
at Ω13 = Ω10 + Ω(2ω1) and Ω14 = Ω10 − Ω(2ω1).

Further properties. For small nonzero values of |H|,
the resonant energy exchange mechanism governing scat-
tering in the bulk φ4 model is changed in two ways in the
boundary theory: (i) The attractive force acting on the
antikink near to the boundary is modified, in particular
becoming repulsive at greater distances when H is neg-
ative; (ii) After the initial impact, energy can be stored
not only in the internal mode of the antikink, but also,
for positive values of H, in the boundary mode. These
factors change the resonance condition for energy to be
returned to the translational mode of the antikink on a
subsequent impact, leading to the shifting (and, for neg-
ative H, sharpening) of the windows seen in Figs. 2 a-d.
This return can happen after two, three or more bounces
from the boundary, leading to a hierarchy of multibounce
windows as in the full-line situation. However our numer-
ical results suggest that for small positive values of H the
contribution of the boundary mode in the resonant en-
ergy transfer is not significant. For larger values of |H|
other new features appear, two of which we now discuss.

The first is the resurrection of a ‘missing’ two-bounce
window from the full-line scattering noted by Campbell
et al in [10]. Fig. 2a includes a scattering window centred
at vi ≈ 0.245 which is not the continuation of any of
the windows seen in Figs. 2 b-d; the same window can
be seen in Fig. 3 running from (H, vi) = (−0.12, 0.2) to
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Figure 6. Plots of φ(0, t) for vi inside the first three two-
bounce windows for H = −0.2 (left) and H = 0 (right).

(H, vi) = (−0.45, 0.4). Fig. 6 plots φ(0, t) for vi inside the
first three two-bounce windows for H = −0.2 and H = 0.
As explained in [10], the ‘wobbles’ between the large dips
count oscillations of the internal antikink mode between
bounces; as is clear from the figure, the minimum number
supporting antikink escape is one smaller for H = −0.2
than for the full-line (equivalently, H = 0) case, giving
rise to the extra window.

Second, for large positive values of the magnetic field
the scattering can induce the metastable φ1 boundary
to decay to φ3 with the creation of an extra kink (or
sometimes a bulk oscillon) as charted in Fig. 2e, a pro-
cess that has no analogue in the full-line theory. Indeed,
if the boundary mode is sufficiently strongly excited by
the initial antikink impact, it behaves as an intermedi-
ate state prior to the escape of a kink from the boundary,
analogous to the intermediate oscillon state in the process
of KK̄ pair production on the full line [16, 18, 19]. De-
pending on their relative velocities, the reflected antikink
and the subsequently-emitted kink may appear in the fi-
nal state, or recombine to form a bulk oscillon. In Fig. 4,
right panels, we show some of the processes we observed
atH = 0.90: (d) - inelastic scattering of the antikink with
excitation of the oscillon state on the boundary, (e) - pro-
duction of a KK̄ pair, (f) - production of a bulk oscillon.
The region of boundary decay occupies the solid red area
on the right edge of Fig. 3. An unexpected and intriguing
feature is the cusp-like nick in this region terminating at
(H, vi) ≈ (1, 0.365). This appears to be associated with a
velocity-dependent vanishing of the coupling between the
incident antikink and the boundary mode. It would be
very interesting develop an analytical understanding of
this phenomenon, but we will leave this for future work.
Conclusions. Our investigations of the boundary φ4

theory have shown that it offers a considerably richer va-
riety of resonance phenomena than the bulk theory, but
within a setting where analytical progress can be made.
Key features include the modification of the force lead-
ing to the sharpening of window boundaries and the new
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critical velocity vcr, the resurrection of the first ‘missing’
scattering window, the observation of the boundary os-
cillon, and the collision-induced decay of the metastable
boundary vacuum for H near to 1. Many issues remain
for further study, the most pressing being the develop-
ment of a reliable moduli space approximation incorpo-
rating the boundary degrees of freedom. Furthermore,
we feel that this model is sufficiently simple that it offers
an ideal playground for the development of better ana-
lytical techniques for the understanding of more general
nonintegrable field theories.
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